Mostrar el registro sencillo del ítem

dc.contributor.author
Pérez Rodríguez, Michael  
dc.contributor.author
Mendoza, Alberto  
dc.contributor.author
González, Lucy T.  
dc.contributor.author
Lima Vieira, Alan  
dc.contributor.author
Pellerano, Roberto Gerardo  
dc.contributor.author
Gomes Neto, José Anchieta  
dc.contributor.author
Ferreira, Edilene Cristina  
dc.date.available
2023-10-04T09:40:26Z  
dc.date.issued
2023-01  
dc.identifier.citation
Pérez Rodríguez, Michael; Mendoza, Alberto; González, Lucy T.; Lima Vieira, Alan; Pellerano, Roberto Gerardo; et al.; Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy; MDPI; Foods; 12; 2; 1-2023; 365-373  
dc.identifier.issn
2304-8158  
dc.identifier.uri
http://hdl.handle.net/11336/214011  
dc.description.abstract
Rice is an important source of nutrition and energy consumed around the world. Thus, quality inspection is crucial for protecting consumers and increasing the rice’s value in the productive chain. Currently, methods for rice labeling depending on grain quality features are based on image and/or visual inspection. These methods have shown subjectivity and inefficiency for large-scale analyses. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique showing attractive features due to how quick the analysis can be carried out and its capability of providing spectra that are true fingerprints of the sample’s elemental composition. In this work, LIBS performance was evaluated for labeling rice according to grain quality features. The LIBS spectra of samples with their grain quality numerically described as Type 1, 2, and 3 were measured. Several spectral processing methods were evaluated when modeling a k-nearest neighbors (k-NN) classifier. Variable selection was also carried out by principal component analysis (PCA), and then the optimal k-value was selected. The best result was obtained by applying spectrum smoothing followed by normalization by using the first fifteen principal components (PCs) as input variables and k = 9. Under these conditions, the method showed excellent performance, achieving sample classification with 94% overall prediction accuracy. The sensitivities ranged from 90 to 100%, and specificities were in the range of 92–100%. The proposed method has remarkable characteristics, e.g., analytical speed and analysis guided by chemical responses; therefore, the method is not susceptible to subjectivity errors.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
RICE  
dc.subject
GRAIN QUALITY  
dc.subject
LIBS  
dc.subject
SPECTRAL PROCESSING  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Rice Labeling according to Grain Quality Features Using Laser-Induced Breakdown Spectroscopy  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-09-15T12:45:41Z  
dc.journal.volume
12  
dc.journal.number
2  
dc.journal.pagination
365-373  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Pérez Rodríguez, Michael. Instituto Tecnologico de Monterrey.; México. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina  
dc.description.fil
Fil: Mendoza, Alberto. Instituto Tecnologico de Monterrey.; México  
dc.description.fil
Fil: González, Lucy T.. Instituto Tecnologico de Monterrey.; México  
dc.description.fil
Fil: Lima Vieira, Alan. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil  
dc.description.fil
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina  
dc.description.fil
Fil: Gomes Neto, José Anchieta. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil  
dc.description.fil
Fil: Ferreira, Edilene Cristina. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil  
dc.journal.title
Foods  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2304-8158/12/2/365  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/foods12020365