Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Ordinal pattern transition networks in eye tracking reading signals

Iaconis, Francisco RamiroIcon ; Trujillo Jiménez, Magda AlexandraIcon ; Gasaneo, GustavoIcon ; Rosso, O. A.; Delrieux, Claudio AugustoIcon
Fecha de publicación: 05/2023
Editorial: American Institute of Physics
Revista: Chaos
ISSN: 1054-1500
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Eye tracking is an emerging technology with a wide spectrum of applications, including non-invasive neurocognitive diagnosis. An advantage of the use of eye trackers is in the improved assessment of indirect latent information about several aspects of the subjects' neurophysiology. The path to uncover and take advantage of the meaning and implications of this information, however, is still in its very early stages. In this work, we apply ordinal patterns transition networks as a means to identify subjects with dyslexia in simple text reading experiments. We registered the tracking signal of the eye movements of several subjects (either normal or with diagnosed dyslexia). The evolution of the left-to-right movement over time was analyzed using ordinal patterns, and the transitions between patterns were analyzed and characterized. The relative frequencies of these transitions were used as feature descriptors, with which a classifier was trained. The classifier is able to distinguish typically developed vs dyslexic subjects with almost 100% accuracy only analyzing the relative frequency of the eye movement transition from one particular permutation pattern (plain left to right) to four other patterns including itself. This characterization helps understand differences in the underlying cognitive behavior of these two groups of subjects and also paves the way to several other potentially fruitful analyses applied to other neurocognitive conditions and tests.
Palabras clave: Machine Learning , Decision Theory , Eye tracking , Dyslexia
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.616Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/213921
URL: https://pubs.aip.org/cha/article/33/5/053101/2887745/Ordinal-pattern-transition-
DOI: http://dx.doi.org/10.1063/5.0142230
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos(IPCSH)
Articulos de INSTITUTO PATAGONICO DE CIENCIAS SOCIALES Y HUMANAS
Citación
Iaconis, Francisco Ramiro; Trujillo Jiménez, Magda Alexandra; Gasaneo, Gustavo; Rosso, O. A.; Delrieux, Claudio Augusto; Ordinal pattern transition networks in eye tracking reading signals; American Institute of Physics; Chaos; 33; 5; 5-2023; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES