Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Self-organizing maps for efficient classification of flow regimes from gamma densitometry time series in three-phase fluidized beds

Picabea, Julia ValentinaIcon ; Maestri, Mauricio LeonardoIcon ; Salierno, Gabriel LeonardoIcon ; Cassanello, Miryan; De Blasio, Cataldo; Cardona, Maria AngelicaIcon ; Hojman, Daniel LeonardoIcon ; Somacal, Héctor Rubén
Fecha de publicación: 08/2022
Editorial: IOP Publishing
Revista: Measurement Science & Technology (print)
ISSN: 0957-0233
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

The potential of artificial neural networks as a tool to classify and identify a change in the flow regime of a three-phase fluidized bed is studied. Particularly, the suitability of self-organizing maps (SOMs), unsupervised neural networks that visualize the data in a lower dimension, is evaluated. Statistical features of experimental time series determined in a three-phase (granulated carbon-air-water) fluidized bed are extracted as inputs to train the SOM. Photon-count time series are obtained along the fluidized bed vertical axis by gamma-densitometry at different operative conditions. Then, they are analyzed to determine the underlying flow regime indexes. When each input data is presented to the SOMs, a neuron is activated, giving a visual representation of the data. The resulting models show three different regions on the map for the homogenous, transition, and heterogeneous flow regimes. Once these regions are delimited, the map can quickly classify the equipment operating conditions. The ability of the SOMs to diagnose a flow transition is verified against visual observation and gas hold-up trends. The conclusions are tested for their sensitivity to alternative axial positions of the radiation source used for the densitometry.
Palabras clave: BUBBLE COLUMNS , GAMMA-DENSITOMETRY , MACHINE LEARNING , SELF-ORGANIZING MAPS , THREE-PHASE FLUIDIZATION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.752Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/213821
URL: https://iopscience.iop.org/article/10.1088/1361-6501/ac6d47
DOI: http://dx.doi.org/10.1088/1361-6501/ac6d47
Colecciones
Articulos(ITAPROQ)
Articulos de INSTITUTO DE TECNOLOGIA DE ALIMENTOS Y PROCESOS QUIMICOS
Citación
Picabea, Julia Valentina; Maestri, Mauricio Leonardo; Salierno, Gabriel Leonardo; Cassanello, Miryan; De Blasio, Cataldo; et al.; Self-organizing maps for efficient classification of flow regimes from gamma densitometry time series in three-phase fluidized beds; IOP Publishing; Measurement Science & Technology (print); 33; 8; 8-2022; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES