Mostrar el registro sencillo del ítem
dc.contributor.author
Ragodos, Ronilo
dc.contributor.author
Wang, Tong
dc.contributor.author
Padilla, Carmencita
dc.contributor.author
Hecht, Jacqueline T.
dc.contributor.author
Poletta, Fernando Adrián
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.contributor.author
Orioli, Ieda Maria
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.contributor.author
Buxó, Carmen J.
dc.contributor.author
Butali, Azeez
dc.contributor.author
Valencia Ramirez, Consuelo
dc.contributor.author
Restrepo Muñeton, Claudia
dc.contributor.author
Wehby, George
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.contributor.author
Weinberg, Seth M.
dc.contributor.author
Marazita, Mary L.
dc.contributor.author
Moreno Uribe, Lina M.
dc.contributor.author
Howe, Brian J.
dc.date.available
2023-10-02T17:29:50Z
dc.date.issued
2022-12
dc.identifier.citation
Ragodos, Ronilo; Wang, Tong; Padilla, Carmencita; Hecht, Jacqueline T.; Poletta, Fernando Adrián; et al.; Dental anomaly detection using intraoral photos via deep learning; Nature Research; Scientific Reports; 12; 1; 12-2022; 1-8
dc.identifier.uri
http://hdl.handle.net/11336/213801
dc.description.abstract
Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and can do so significantly faster than a human rater can. For all but three anomalies, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Nature Research
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
dental anomaly
dc.subject
oral cleft
dc.subject
deep learning
dc.subject.classification
Odontología, Medicina y Cirugía Oral
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.subject.classification
Medicina Clínica
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.title
Dental anomaly detection using intraoral photos via deep learning
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T18:16:27Z
dc.identifier.eissn
2045-2322
dc.journal.volume
12
dc.journal.number
1
dc.journal.pagination
1-8
dc.journal.pais
Reino Unido
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.journal.ciudad
London
dc.description.fil
Fil: Ragodos, Ronilo. University of Iowa; Estados Unidos
dc.description.fil
Fil: Wang, Tong. University of Iowa; Estados Unidos
dc.description.fil
Fil: Padilla, Carmencita. University of the Philippines; Filipinas
dc.description.fil
Fil: Hecht, Jacqueline T.. University of Texas Health Science Center at Houston; Estados Unidos
dc.description.fil
Fil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; Argentina
dc.description.fil
Fil: Orioli, Ieda Maria. Universidade Federal do Rio de Janeiro; Brasil
dc.description.fil
Fil: Buxó, Carmen J.. Universidad de Puerto Rico; Puerto Rico
dc.description.fil
Fil: Butali, Azeez. University of Iowa; Estados Unidos
dc.description.fil
Fil: Valencia Ramirez, Consuelo. Fundación Clínica Noel; Colombia
dc.description.fil
Fil: Restrepo Muñeton, Claudia. Fundación Clínica Noel; Colombia
dc.description.fil
Fil: Wehby, George. University of Iowa; Estados Unidos
dc.description.fil
Fil: Weinberg, Seth M.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos
dc.description.fil
Fil: Marazita, Mary L.. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados Unidos
dc.description.fil
Fil: Moreno Uribe, Lina M.. University of Iowa; Estados Unidos
dc.description.fil
Fil: Howe, Brian J.. University of Iowa; Estados Unidos
dc.journal.title
Scientific Reports
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-022-15788-1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-022-15788-1
Archivos asociados