Mostrar el registro sencillo del ítem

dc.contributor.author
Beiro, Mariano Gastón  
dc.contributor.author
Kalimeri, Kyriaki  
dc.date.available
2023-09-29T18:36:32Z  
dc.date.issued
2022-09  
dc.identifier.citation
Beiro, Mariano Gastón; Kalimeri, Kyriaki; Fairness in vulnerable attribute prediction on social media; Springer; Data Mining And Knowledge Discovery; 36; 6; 9-2022; 2194-2213  
dc.identifier.issn
1384-5810  
dc.identifier.uri
http://hdl.handle.net/11336/213661  
dc.description.abstract
Historically, policymakers and practitioners relied exclusively on survey and census data to design and plan for assistive interventions; now, social media offer a timely and cost-effective way to reach out to populations otherwise unobserved. This study was designed to address the needs of a non-for-profit organisation to reach out to the young unemployed individuals in Italy with educational and job opportunities via communication channels that are more likely to appeal to younger generations. To this extend, we developed an ad-hoc Facebook application which administers questionnaires while gathering data about the Likes on Facebook Pages. Then, we developed a machine learning framework that successfully predicts the unemployment status of an unseen individual (.74 AUC). However, blindly delegating to the machine learning model the communication intervention may lead to digital discrimination on the basis of socio-demographic characteristics. Here, we propose a framework that aims to optimising both for the prediction performance as well as the most adequate fairness metric. Our framework is based on an adaptive threshold for gender, while we show that it can be expanded for other socio-demographic attributes and generalised for other interventions of assistive character. We present a doubly cross-validated setting that achieves out-of-sample stability and generalisability of results. We compare the behaviour of models that infer on different sets of data and provide an indepth discussion on the most predictive features, demonstrating that the “fairness through unawareness” approach does not suffice to achieve a fair classification since sensitive demographic information can be inferred not only via other sociodemographic attributes but also from behavioural digital patterns. Finally, we thoroughly assess the behaviour of the adaptive threshold approach and provide an in-depth discussion on the advantages but also the implications of such models offering actionable insights. Our results show that careful assessment of fairness metrics should be considered, primarily when AI models are employed for policymaking.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DATA FOR SOCIAL GOOD  
dc.subject
DIGITAL DISCRIMINATION  
dc.subject
FAIRNESS  
dc.subject
MACHINE LEARNING  
dc.subject
SOCIAL MEDIA  
dc.subject
UNEMPLOYMENT  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Fairness in vulnerable attribute prediction on social media  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T23:00:42Z  
dc.journal.volume
36  
dc.journal.number
6  
dc.journal.pagination
2194-2213  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Beiro, Mariano Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina  
dc.description.fil
Fil: Kalimeri, Kyriaki. Institute For Scientific Interchange Foundation; Italia  
dc.journal.title
Data Mining And Knowledge Discovery  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10618-022-00855-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10618-022-00855-y