Artículo
Weighted Discrete Hardy Inequalities on Trees and Applications
Fecha de publicación:
01/2022
Editorial:
Springer
Revista:
Potential Analysis
ISSN:
0926-2601
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we study certain inequalities and a related result for weighted Sobolev spaces on Hölder-α domains, where the weights are powers of the distance to the boundary. We obtain results regarding the divergence equation’s solvability, and the improved Poincaré, the fractional Poincaré, and the Korn inequalities. The proofs are based on a local-to-global argument that involves a kind of atomic decomposition of functions and the validity of a weighted discrete Hardy-type inequality on trees. The novelty of our approach lies in the use of this weighted discrete Hardy inequality and a sufficient condition that allows us to study the weights of our interest. As a consequence, the assumptions on the weight exponents that appear in our results are weaker than those in the literature.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
López-García, Fernando; Ojea, Ignacio; Weighted Discrete Hardy Inequalities on Trees and Applications; Springer; Potential Analysis; 59; 2; 1-2022; 675-703
Compartir
Altmétricas