Mostrar el registro sencillo del ítem

dc.contributor.author
Catren, Gabriel  
dc.contributor.author
Cukierman, Fernando Miguel  
dc.date.available
2023-09-27T18:29:23Z  
dc.date.issued
2022-08  
dc.identifier.citation
Catren, Gabriel; Cukierman, Fernando Miguel; Correction: Grothendieck’s theory of schemes and the algebra–geometry duality ; Springer; Synthese (Dordrecht); 200; 4; 8-2022; 1-41  
dc.identifier.issn
0039-7857  
dc.identifier.uri
http://hdl.handle.net/11336/213330  
dc.description.abstract
We shall address from a conceptual perspective the duality between algebra and geometry in the framework of the refoundation of algebraic geometry associated to Grothendieck’s theory of schemes. To do so, we shall revisit scheme theory from the standpoint provided by the problem of recovering a mathematical structure A from its representations A → B into other similar structures B. This vantage point will allow us to analyze the relationship between the algebra-geometry duality and (what we shall call) the structure-semiotics duality (of which the syntax-semantics duality for propositional and predicate logic are particular cases). Whereas in classical algebraic geometry a certain kind of rings can be recovered by considering their representations with respect to a unique codomain B, Grothendieck’s theory of schemes permits to reconstruct general (commutative) rings by considering representations with respect to a category of codomains. The strategy to reconstruct the object from its repre- sentations remains the same in both frameworks: the elements of the ring A can be realized—by means of what we shall generally call Gelfand transform—as quantities on a topological space that parameterizes the relevant representations of A. As we shall argue, important dualities in different areas of mathematics (e.g. Stone duality, Gelfand duality, Pontryagin duality, Galois-Grothendieck duality, etc.) can be under- stood as particular cases of this general pattern. In the wake of Majid’s analysis of the Pontryagin duality, we shall propose a Kantian-oriented interpretation of this pattern. We shall use this conceptual framework to argue that Grothendieck’s notion of func- tor of points can be understood as a “relativization of the a priori” (Friedman) that generalizes the relativization already conveyed by the notion of domain extension to more general variations of the corresponding (co)domains.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Algebra geometry duality  
dc.subject
Gelfand transform  
dc.subject
Algebra  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Correction: Grothendieck’s theory of schemes and the algebra–geometry duality  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:45:23Z  
dc.journal.volume
200  
dc.journal.number
4  
dc.journal.pagination
1-41  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Catren, Gabriel. Université Paris Cité; Francia  
dc.description.fil
Fil: Cukierman, Fernando Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Synthese (Dordrecht)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11229-022-03789-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11229-022-03789-6