Mostrar el registro sencillo del ítem
dc.contributor.author
Dinapoli, Matias
dc.contributor.author
Simionato, Claudia Gloria
dc.date.available
2023-09-27T16:44:47Z
dc.date.issued
2022-08
dc.identifier.citation
Dinapoli, Matias; Simionato, Claudia Gloria; An integrated methodology for post-processing ensemble prediction systems to produce more representative extreme water level forecasts: the case of the Río de la Plata estuary; Springer; Natural Hazards; 114; 3; 8-2022; 2927-2940
dc.identifier.issn
0921-030X
dc.identifier.uri
http://hdl.handle.net/11336/213282
dc.description.abstract
The effects of weather extreme events can pose a threat to life and property, which is why proper prediction systems take on superlative importance. Despite the significant scientific advances in the field during the last decades, due to the intrinsic imperfections of prediction systems there will always be unavoidable uncertainties. To deal with them, deterministic prediction systems have been extended to “ensemble prediction systems” (EPS), defined as a composition of several simulations under different forcings, boundary conditions, parameters, models, etc., designed to represent the uncertainties. The mean of the EPS is often used for deterministic guidance to report the prediction but, in the presence of large differences among ensemble members, the average generates skewness that might underestimate the magnitude of the forecasts. In this paper, two techniques are revisited and readapted to improve the EPS forecasts. Firstly, it is proposed to partition ensemble forecasts into sub-ensemble forecasts, using cluster analysis to produce more representative predictions; this technique seeks to eliminate from the ensemble members which occurrence is considered unlikely. Secondly, it is suggested to associate to the ensemble forecast a complementary phase-aware ensemble (PAE) forecast, which computes the ensemble mean and spread separating the signal into carrier and modulated waves using the Hilbert transform. This integrated post-processing methodology was assessed with extreme storm surges that took place at the Río de la Plata estuary (Argentina) during this century with amplitudes exceeding ± 2 m (being the tidal range of about 0.75 m), for which the EPS presents large dispersion. Results show that, in the analyzed cases, the post-processing filters out the unlikely dynamical states, adjusts the mean ensemble to the observations and significantly reduces the uncertainty; the spread is reduced from 3 m to less than 1 m. The probability was also improved; for the analyzed cases, calibrated forecasts could anticipate peak events 4 days in advance with a relatively small uncertainty in both time and amplitude (one standard deviation). Additionally, the technique does not harm the forecast in cases when the dispersion between members of the ensemble is low. These results, together with the low computational cost of applying the technique, support incorporating our post-processing methodology as part of the EPS for storm surges, in which uncertainty is paramount for issuing warnings to face the effects of extreme weather events.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ENSEMBLE FORECAST
dc.subject
ENSEMBLE POST-PROCESSING
dc.subject
EXTREME SURGE FORECAST
dc.subject
PROBABILISTIC FORECAST
dc.subject
RÍO DE LA PLATA ESTUARY
dc.subject.classification
Oceanografía, Hidrología, Recursos Hídricos
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
An integrated methodology for post-processing ensemble prediction systems to produce more representative extreme water level forecasts: the case of the Río de la Plata estuary
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:14:38Z
dc.journal.volume
114
dc.journal.number
3
dc.journal.pagination
2927-2940
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Dinapoli, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
dc.description.fil
Fil: Simionato, Claudia Gloria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
dc.journal.title
Natural Hazards
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11069-022-05499-1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s11069-022-05499-1
Archivos asociados