Mostrar el registro sencillo del ítem

dc.contributor.author
Bergesio, Andrea Claudia  
dc.contributor.author
Szretter Noste, María Eugenia  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2023-09-27T16:36:51Z  
dc.date.issued
2021-01  
dc.identifier.citation
Bergesio, Andrea Claudia; Szretter Noste, María Eugenia; Yohai, Victor Jaime; A robust proposal of estimation for the sufficient dimension reduction problem; Springer; Test; 30; 3; 1-2021; 758-783  
dc.identifier.issn
1133-0686  
dc.identifier.uri
http://hdl.handle.net/11336/213278  
dc.description.abstract
In nonparametric regression contexts, when the number of covariables is large, we face the curse of dimensionality. One way to deal with this problem when the sample is not large enough is using a reduced number of linear combinations of the explanatory variables that contain most of the information about the response variable. This leads to the so-called sufficient reduction problem. The purpose of this paper is to obtain robust estimators of a sufficient dimension reduction, that is, estimators which are not very much affected by the presence of a small fraction of outliers in the data. One way to derive a sufficient dimension reduction is by means of the principal fitted components (PFC) model. We obtain robust estimations for the parameters of this model and the corresponding sufficient dimension reduction based on a τ-scale (τ-estimators). Strong consistency of these estimators under weak assumptions of the underlying distribution is proven. The τ-estimators for the PFC model are computed using an iterative algorithm. A Monte Carlo study compares the performance of τ-estimators and maximum likelihood estimators. The results show clear advantages for τ-estimators in the presence of outlier contamination and only small loss of efficiency when outliers are absent. A proposal to select the dimension of the reduction space based on cross-validation is given. These estimators are implemented in R language through functions contained in the package tauPFC. As the PFC model is a special case of multivariate reduced-rank regression, our proposal can be applied directly to this model as well.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MULTIVARIATE REDUCED-RANK REGRESSION  
dc.subject
PRINCIPAL FITTED COMPONENTS  
dc.subject
ROBUSTNESS  
dc.subject
Τ-ESTIMATORS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A robust proposal of estimation for the sufficient dimension reduction problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-09-27T13:53:59Z  
dc.journal.volume
30  
dc.journal.number
3  
dc.journal.pagination
758-783  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Bergesio, Andrea Claudia. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina  
dc.description.fil
Fil: Szretter Noste, María Eugenia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina  
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Test  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11749-020-00745-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.1007/s11749-020-00745-9