Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Artificial neural network for the prediction of physical properties of organic compounds based on the group contribution method

Perez Correa, IgnacioIcon ; Giunta, Pablo DanielIcon ; Francesconi, Javier AndresIcon ; Mariño, Fernando JavierIcon
Fecha de publicación: 11/2022
Editorial: John Wiley & Sons
Revista: The Canadian Journal Of Chemical Engineering
ISSN: 0008-4034
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

In the development and optimization of chemical processes involving the selection of organic fluids, knowledge of the physical properties of compounds is vital. In many cases, it is complex to find experimental measurements for all substances, so it becomes necessary to have a tool to predict properties based on the characteristics of the molecule. One of the most extensively used methods in the literature is the estimation by contribution of functional groups, where properties are calculated using the constituent elements of the molecule. There are several models published in the literature, but they fail to represent a wide variety of compounds with high accuracy and simultaneously maintain a low computational complexity. The aim of this work is to develop a prediction model for eight thermodynamic properties (melting temperature, boiling temperature, critical pressure, critical temperature, critical volume, enthalpy of vaporization, enthalpy of fusion, and enthalpy of gas formation) based on the group contribution methodology by implementing a multilayer perceptron. Here, 2736 substances were used to train the neural network, whose prediction capacity was compared with other reference models available in the literature. The proposed model presents errors ranging from 1% to 5% for the different properties (except for the melting point), which improves the reference models with errors in the range of 3%–30%. Nevertheless, a difficulty in the prediction of the melting point is detected, which could represent an inherent hindrance to this methodology.
Palabras clave: ARTIFICIAL NEURAL NETWORK , GROUP CONTRIBUTION MODEL , ORGANIC FLUIDS , PROPERTY PREDICTION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.748Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/213074
URL: https://onlinelibrary.wiley.com/doi/10.1002/cjce.24788
DOI: http://dx.doi.org/10.1002/cjce.24788
Colecciones
Articulos(ITHES)
Articulos de INST. DE TECNOLOGIAS DEL HIDROGENO Y ENERGIAS SOSTENIBLES
Citación
Perez Correa, Ignacio; Giunta, Pablo Daniel; Francesconi, Javier Andres; Mariño, Fernando Javier; Artificial neural network for the prediction of physical properties of organic compounds based on the group contribution method; John Wiley & Sons; The Canadian Journal Of Chemical Engineering; 101; 8; 11-2022; 4771-4783
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES