Mostrar el registro sencillo del ítem
dc.contributor.author
Baerenbold, Oliver
dc.contributor.author
Meis, Melanie
dc.contributor.author
Martínez Hernández, Israel
dc.contributor.author
Euán, Carolina
dc.contributor.author
Burr, Wesley S.
dc.contributor.author
Tremper, Anja
dc.contributor.author
Fuller, Gary
dc.contributor.author
Pirani, Monica
dc.contributor.author
Blangiardo, Marta
dc.date.available
2023-09-26T15:13:55Z
dc.date.issued
2022-09
dc.identifier.citation
Baerenbold, Oliver; Meis, Melanie; Martínez Hernández, Israel; Euán, Carolina; Burr, Wesley S.; et al.; A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution; John Wiley & Sons Ltd; Environmetrics; 34; 1; 9-2022; 1-19
dc.identifier.issn
1180-4009
dc.identifier.uri
http://hdl.handle.net/11336/213061
dc.description.abstract
The relationship between particle exposure and health risks has been well established in recent years. Particulate matter (PM) is made up of different components coming from several sources, which might have different level of toxicity. Hence, identifying these sources is an important task in order to implement effective policies to improve air quality and population health. The problem of identifying sources of particulate pollution has already been studied in the literature. However, current methods require an a priori specification of the number of sources and do not include information on covariates in the source allocations. Here, we propose a novel Bayesian nonparametric approach to overcome these limitations. In particular, we model source contribution using a Dirichlet process as a prior for source profiles, which allows us to estimate the number of components that contribute to particle concentration rather than fixing this number beforehand. To better characterize them we also include meteorological variables (wind speed and direction) as covariates within the allocation process via a flexible Gaussian kernel. We apply the model to apportion particle number size distribution measured near London Gatwick Airport (UK) in 2019. When analyzing this data, we are able to identify the most common PM sources, as well as new sources that have not been identified with the commonly used methods.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
BAYESIAN MODELING
dc.subject
DEPENDENT DIRICHLET PROCESS
dc.subject
PARTICLE CONCENTRATIONS
dc.subject
SOURCE APPORTIONMENT
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:21:12Z
dc.journal.volume
34
dc.journal.number
1
dc.journal.pagination
1-19
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Baerenbold, Oliver. Imperial College London; Reino Unido
dc.description.fil
Fil: Meis, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
dc.description.fil
Fil: Martínez Hernández, Israel. Lancaster University; Reino Unido
dc.description.fil
Fil: Euán, Carolina. Lancaster University; Reino Unido
dc.description.fil
Fil: Burr, Wesley S.. Trent University (trent University);
dc.description.fil
Fil: Tremper, Anja. Imperial College London; Reino Unido
dc.description.fil
Fil: Fuller, Gary. Imperial College London; Reino Unido
dc.description.fil
Fil: Pirani, Monica. Imperial College London; Reino Unido
dc.description.fil
Fil: Blangiardo, Marta. Imperial College London; Reino Unido
dc.journal.title
Environmetrics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/env.2763
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/env.2763
Archivos asociados