Mostrar el registro sencillo del ítem

dc.contributor.author
Baerenbold, Oliver  
dc.contributor.author
Meis, Melanie  
dc.contributor.author
Martínez Hernández, Israel  
dc.contributor.author
Euán, Carolina  
dc.contributor.author
Burr, Wesley S.  
dc.contributor.author
Tremper, Anja  
dc.contributor.author
Fuller, Gary  
dc.contributor.author
Pirani, Monica  
dc.contributor.author
Blangiardo, Marta  
dc.date.available
2023-09-26T15:13:55Z  
dc.date.issued
2022-09  
dc.identifier.citation
Baerenbold, Oliver; Meis, Melanie; Martínez Hernández, Israel; Euán, Carolina; Burr, Wesley S.; et al.; A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution; John Wiley & Sons Ltd; Environmetrics; 34; 1; 9-2022; 1-19  
dc.identifier.issn
1180-4009  
dc.identifier.uri
http://hdl.handle.net/11336/213061  
dc.description.abstract
The relationship between particle exposure and health risks has been well established in recent years. Particulate matter (PM) is made up of different components coming from several sources, which might have different level of toxicity. Hence, identifying these sources is an important task in order to implement effective policies to improve air quality and population health. The problem of identifying sources of particulate pollution has already been studied in the literature. However, current methods require an a priori specification of the number of sources and do not include information on covariates in the source allocations. Here, we propose a novel Bayesian nonparametric approach to overcome these limitations. In particular, we model source contribution using a Dirichlet process as a prior for source profiles, which allows us to estimate the number of components that contribute to particle concentration rather than fixing this number beforehand. To better characterize them we also include meteorological variables (wind speed and direction) as covariates within the allocation process via a flexible Gaussian kernel. We apply the model to apportion particle number size distribution measured near London Gatwick Airport (UK) in 2019. When analyzing this data, we are able to identify the most common PM sources, as well as new sources that have not been identified with the commonly used methods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
BAYESIAN MODELING  
dc.subject
DEPENDENT DIRICHLET PROCESS  
dc.subject
PARTICLE CONCENTRATIONS  
dc.subject
SOURCE APPORTIONMENT  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:21:12Z  
dc.journal.volume
34  
dc.journal.number
1  
dc.journal.pagination
1-19  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Baerenbold, Oliver. Imperial College London; Reino Unido  
dc.description.fil
Fil: Meis, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina  
dc.description.fil
Fil: Martínez Hernández, Israel. Lancaster University; Reino Unido  
dc.description.fil
Fil: Euán, Carolina. Lancaster University; Reino Unido  
dc.description.fil
Fil: Burr, Wesley S.. Trent University (trent University);  
dc.description.fil
Fil: Tremper, Anja. Imperial College London; Reino Unido  
dc.description.fil
Fil: Fuller, Gary. Imperial College London; Reino Unido  
dc.description.fil
Fil: Pirani, Monica. Imperial College London; Reino Unido  
dc.description.fil
Fil: Blangiardo, Marta. Imperial College London; Reino Unido  
dc.journal.title
Environmetrics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/env.2763  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/env.2763