Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

QTL and genomic prediction accuracy for grain yield and secondary traits in a maize population under heat and heat-drought stresses

Neiff, NicolásIcon ; González Pérez, Lorena; Mendoza Lugo, Jose Alberto; Martínez, Carlos; Kettler, Belén AraceliIcon ; Dhliwayo, Thanda; Babu, Raman; Trachsel, Samuel
Fecha de publicación: 11/2022
Editorial: Taylor & Francis Ltd
Revista: Journal of Crop Improvement
ISSN: 1542-7528
e-ISSN: 1542-7536
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

Heat and drought stresses negatively affect maize (Zea mays L.) productivity. We aimed to identify the genetic basis of tolerance to heat stress (HS) and combined heat and drought stress (HS+DS) and compare how QTL and whole genome selection (GS) could be leveraged to improve tolerance to both stresses. A set of 97 testcross hybrids derived from a maize bi-parental doubled-haploid population was evaluated during the summer seasons of 2014, 2015, and 2016 in Ciudad Obregon, Sonora, Mexico, under HS and HS+DS. Grain yield (GY) reached 5.7 t ha−1 under HS and 3.0 t ha−1 under HS+DS. Twenty-six QTL were detected across six environments, with LOD scores ranging from 2.03 to 3.86; the QTL explained 8.6% to 18.6% of the observed phenotypic variation. Hyperspectral biomass and structural index (HBSI) had higher genetic correlation with GY for HS (r = 0.97) and HS+DS (r = 0.74), relative to the correlation with crop water mass or greenness indices. Genetic correlations between GY and canopy temperature for HS (r = −0.89) and HS+DS (r = −0.75) or vegetation indices, along with clusters of QTL in bins 1.02, 1.05, and 2.05, underline the importance of these genomic areas for secondary traits associated with general vigor and greenness. Prediction accuracy of the model used for GS had values below those found in previous studies. We found a high-yielding hybrid that was tolerant to HS and HS+DS.
Palabras clave: CANOPY TEMPERATURE , CLIMATE CHANGE , DOUBLED HAPLOID , PLANT BREEDING
Ver el registro completo
 
Archivos asociados
Tamaño: 3.827Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/213045
DOI: http://dx.doi.org/10.1080/15427528.2022.2145591
URL: https://www.tandfonline.com/doi/full/10.1080/15427528.2022.2145591
Colecciones
Articulos(CECOAL)
Articulos de CENTRO DE ECOLOGIA APLICADA DEL LITORAL (I)
Citación
Neiff, Nicolás; González Pérez, Lorena; Mendoza Lugo, Jose Alberto; Martínez, Carlos; Kettler, Belén Araceli; et al.; QTL and genomic prediction accuracy for grain yield and secondary traits in a maize population under heat and heat-drought stresses; Taylor & Francis Ltd; Journal of Crop Improvement; 37; 5; 11-2022; 709-734
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES