Mostrar el registro sencillo del ítem

dc.contributor.author
Ullah, Abd  
dc.contributor.author
Tariq, Akash  
dc.contributor.author
Sardans, Jordi  
dc.contributor.author
Peñuelas, Josep  
dc.contributor.author
Zeng, Fanjiang  
dc.contributor.author
Graciano, Corina  
dc.contributor.author
Asghar, Muhammad Ahsan  
dc.contributor.author
Raza, Ali  
dc.contributor.author
Xiong, You Cai  
dc.contributor.author
Chai, Xutian  
dc.contributor.author
Zhang, Zhihao  
dc.date.available
2023-09-26T09:55:22Z  
dc.date.issued
2022-12  
dc.identifier.citation
Ullah, Abd; Tariq, Akash; Sardans, Jordi; Peñuelas, Josep; Zeng, Fanjiang; et al.; Alhagi sparsifolia acclimatizes to saline stress by regulating its osmotic, antioxidant, and nitrogen assimilation potential; BioMed Central; BMC Plant Biology; 22; 1; 12-2022; 1-17  
dc.identifier.issn
1471-2229  
dc.identifier.uri
http://hdl.handle.net/11336/212998  
dc.description.abstract
Background: Alhagi sparsifolia (Camelthorn) is a leguminous shrub species that dominates the Taklimakan desert’s salty, hyperarid, and infertile landscapes in northwest China. Although this plant can colonize and spread in very saline soils, how it adapts to saline stress in the seedling stage remains unclear so a pot-based experiment was carried out to evaluate the effects of four different saline stress levels (0, 50, 150, and 300 mM) on the morphological and physio-biochemical responses in A. sparsifolia seedlings. Results: Our results revealed that N-fixing A. sparsifolia has a variety of physio-biochemical anti-saline stress acclimations, including osmotic adjustments, enzymatic mechanisms, and the allocation of metabolic resources. Shoot–root growth and chlorophyll pigments significantly decreased under intermediate and high saline stress. Additionally, increasing levels of saline stress significantly increased Na+ but decreased K+ concentrations in roots and leaves, resulting in a decreased K+/Na+ ratio and leaves accumulated more Na + and K + ions than roots, highlighting their ability to increase cellular osmolarity, favouring water fluxes from soil to leaves. Salt-induced higher lipid peroxidation significantly triggered antioxidant enzymes, both for mass-scavenging (catalase) and cytosolic fine-regulation (superoxide dismutase and peroxidase) of H2O2. Nitrate reductase and glutamine synthetase/glutamate synthase also increased at low and intermediate saline stress levels but decreased under higher stress levels. Soluble proteins and proline rose at all salt levels, whereas soluble sugars increased only at low and medium stress. The results show that when under low-to-intermediate saline stress, seedlings invest more energy in osmotic adjustments but shift their investment towards antioxidant defense mechanisms under high levels of saline stress. Conclusions: Overall, our results suggest that A. sparsifolia seedlings tolerate low, intermediate, and high salt stress by promoting high antioxidant mechanisms, osmolytes accumulations, and the maintenance of mineral N assimilation. However, a gradual decline in growth with increasing salt levels could be attributed to the diversion of energy from growth to maintain salinity homeostasis and anti-stress oxidative mechanisms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BioMed Central  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
HYPERARID DESERT  
dc.subject
IONS HOMEOSTASIS  
dc.subject
PHYSIOLOGICAL INDICES  
dc.subject
SALINE STRESS  
dc.subject
XEROPHYTES  
dc.subject.classification
Silvicultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Alhagi sparsifolia acclimatizes to saline stress by regulating its osmotic, antioxidant, and nitrogen assimilation potential  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T21:36:30Z  
dc.journal.volume
22  
dc.journal.number
1  
dc.journal.pagination
1-17  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Ullah, Abd. Chinese Academy of Sciences; República de China  
dc.description.fil
Fil: Tariq, Akash. Consejo Superior de Investigaciones Científicas. Centre de Recerca Ecológica I Aplicacions Forestals; España  
dc.description.fil
Fil: Sardans, Jordi. Consejo Superior de Investigaciones Científicas. Centre de Recerca Ecológica I Aplicacions Forestals; España  
dc.description.fil
Fil: Peñuelas, Josep. Consejo Superior de Investigaciones Científicas. Centre de Recerca Ecológica I Aplicacions Forestals; España  
dc.description.fil
Fil: Zeng, Fanjiang. Chinese Academy of Sciences; República de China  
dc.description.fil
Fil: Graciano, Corina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentina  
dc.description.fil
Fil: Asghar, Muhammad Ahsan. No especifíca;  
dc.description.fil
Fil: Raza, Ali. University of Chinese Academy of Sciences; China  
dc.description.fil
Fil: Xiong, You Cai. Lanzhou University; China  
dc.description.fil
Fil: Chai, Xutian. Chinese Academy of Sciences; República de China  
dc.description.fil
Fil: Zhang, Zhihao. Chinese Academy of Sciences; República de China  
dc.journal.title
BMC Plant Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s12870-022-03832-1