Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Machine learning techniques to construct detailed phase diagrams for skyrmion systems

Gómez Albarracín, Flavia AlejandraIcon ; Rosales, Héctor DiegoIcon
Fecha de publicación: 05/2022
Editorial: American Physical Society
Revista: Physical Review B: Condensed Matter and Materials Physics
ISSN: 1098-0121
e-ISSN: 2469-9969
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

Recently, there has been an increased interest in the application of machine learning (ML) techniques to a variety of problems in condensed-matter physics. In this regard, of particular significance is the characterization of simple and complex phases of matter. Here, we use a ML approach to construct the full phase diagram of a well-known spin model combining ferromagnetic exchange and Dzyaloshinskii-Moriya (DM) interactions where topological phases emerge. At low temperatures, the system is tuned from a spiral phase to a skyrmion crystal by a magnetic field. However, thermal fluctuations induce two types of intermediate phases, bimerons and skyrmion gas, which are not as easily determined as spirals or skyrmion crystals. We resort to large-scale Monte Carlo simulations to obtain low-temperature spin configurations and train a convolutional neural network (CNN), taking only snapshots at specific values of the DM couplings, to classify between the different phases, focusing on the intermediate and intricate topological textures. We then apply the CNN to higher-temperature configurations and to other DM values to construct a detailed magnetic-field-temperature phase diagram, achieving outstanding results. We discuss the importance of including the disordered paramagnetic phases in order to get the phase boundaries, and, finally, we compare our approach with other ML algorithms.
Palabras clave: SKYRMIONS , MACHINE LEARNING , TOPOLOGY , MONTE CARLO
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.030Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/212735
DOI: https://doi.org/10.1103/PhysRevB.105.214423
Colecciones
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Gómez Albarracín, Flavia Alejandra; Rosales, Héctor Diego; Machine learning techniques to construct detailed phase diagrams for skyrmion systems; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 105; 21; 5-2022; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES