Mostrar el registro sencillo del ítem

dc.contributor.author
Irastorza, Ramiro Miguel  
dc.contributor.author
Maher, Timothy  
dc.contributor.author
Barkagan, Michael  
dc.contributor.author
Liubasuskas, Rokas  
dc.contributor.author
Pérez, Juan J.  
dc.contributor.author
Berjano, Enrique  
dc.contributor.author
D’Avila, Andre  
dc.date.available
2023-09-22T14:46:42Z  
dc.date.issued
2022-10  
dc.identifier.citation
Irastorza, Ramiro Miguel; Maher, Timothy; Barkagan, Michael; Liubasuskas, Rokas; Pérez, Juan J.; et al.; Limitations of Baseline Impedance, Impedance Drop and Current for Radiofrequency Catheter Ablation Monitoring: Insights from In silico Modeling; MDPI; Journal of Cardiovascular Development and Disease; 9; 10; 10-2022; 1-12  
dc.identifier.issn
2308-3425  
dc.identifier.uri
http://hdl.handle.net/11336/212698  
dc.description.abstract
Background: Baseline impedance, radiofrequency current, and impedance drop during radiofrequency catheter ablation are thought to predict effective lesion formation. However, quantifying the contributions of local versus remote impedances provides insights into the limitations of indices using those parameters. Methods: An in silico model of left atrial radiofrequency catheter ablation was used based on human thoracic measurements and solved for (1) initial impedance (Z), (2) percentage of radiofrequency power delivered to the myocardium and blood (3) total radiofrequency current, (4) impedance drop during heating, and (5) lesion size after a 25 W–30 s ablation. Remote impedance was modeled by varying the mixing ratio between skeletal muscle and fat. Local impedance was modeled by varying insertion depth of the electrode (ID). Results: Increasing the remote impedance led to increased baseline impedance, lower system current delivery, and reduced lesion size. For ID = 0.5 mm, Z ranged from 115 to 132 Ω when fat percentage varied from 20 to 80%, resulting in a decrease in the RF current from 472 to 347 mA and a slight decrease in lesion size from 5.6 to 5.1 mm in depth, and from 9.2 to 8.0 mm in maximum width. In contrast, increasing the local impedance led to lower system current but larger lesions. For a 50% fat–muscle mixture, Z ranged from 118 to 138 Ω when ID varied from 0.3 to 1.9 mm, resulting in a decrease in the RF current from 463 to 443 mA and an increase in lesion size, from 5.2 up to 7.5 mm in depth, and from 8.4 up to 11.6 mm in maximum width. In cases of nearly identical Z but different contributions of local and remote impedance, markedly different lesions sizes were observed despite only small differences in RF current. Impedance drop better predicted lesion size (R2 > 0.93) than RF current (R2 < 0.1). Conclusions: Identical baseline impedances and observed RF currents can lead to markedly different lesion sizes with different relative contributions of local and remote impedances to the electrical circuit. These results provide mechanistic insights into the advantage of measuring local impedance and identifies potential limitations of indices incorporating baseline impedance or current to predict lesion quality.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
BIOPHYSICS  
dc.subject
COMPUTER MODELING  
dc.subject
IMPEDANCE  
dc.subject
RADIOFREQUENCY CATHETER ABLATION  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Limitations of Baseline Impedance, Impedance Drop and Current for Radiofrequency Catheter Ablation Monitoring: Insights from In silico Modeling  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-06-29T10:27:12Z  
dc.journal.volume
9  
dc.journal.number
10  
dc.journal.pagination
1-12  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Irastorza, Ramiro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.description.fil
Fil: Maher, Timothy. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Barkagan, Michael. Sackler School Of Medicine; Israel  
dc.description.fil
Fil: Liubasuskas, Rokas. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Pérez, Juan J.. Universidad Politécnica de Valencia; España  
dc.description.fil
Fil: Berjano, Enrique. Universidad Politécnica de Valencia; España  
dc.description.fil
Fil: D’Avila, Andre. Harvard Medical School; Estados Unidos  
dc.journal.title
Journal of Cardiovascular Development and Disease  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/jcdd9100336