Mostrar el registro sencillo del ítem

dc.contributor.author
Sánchez, Hernán Rubén  
dc.date.available
2023-09-22T12:12:33Z  
dc.date.issued
2022-11  
dc.identifier.citation
Sánchez, Hernán Rubén; Residence Times from Molecular Dynamics Simulations; American Chemical Society; Journal of Physical Chemistry B; 126; 43; 11-2022; 8804-8812  
dc.identifier.issn
1520-6106  
dc.identifier.uri
http://hdl.handle.net/11336/212646  
dc.description.abstract
In this work, efficient methods are proposed for the calculation, from molecular dynamics trajectories, of residence times (RTs) and related quantities. One of these was designed to obtain RT distributions, from which mean residence times (MRTs), residual time distributions, and mean residual times can be computed. This method does not require the assumptions and approximations made by the most commonly used methods. Its link to the most popular method in the literature is identified. It is shown how the much faster new method can be used as a replacement for the latter and the advantages of doing so. Also, a prescription for estimating the uncertainty in the MRTs obtained though the proposed method is provided. Another even faster method for the calculation of the MRTs, their uncertainties, and the mean residual times is also proposed. It yields exactly the same results as the first one but does not allow to obtain the mentioned distributions. Another very popular method, based on autocorrelation functions, for computing MRTs is analyzed in terms of its assumptions and approximations. An alternative, also based on autocorrelation functions, which is faster and requires fewer assumptions is presented. A prescription for the calculation of the uncertainty of the MRTs obtained with the latter method is also provided. In the literature, there are a few methods to discard short transient escapes. Here, an algorithm is suggested that is much faster than the most used one and allows a more integral treatment of the process. Also, it is more widely applicable because it is a preprocessing step that can be used in conjunction with any of the proposed methods mentioned above. The main disadvantage of these two approaches to discard brief escapes is that the maximum duration allowed for an escape to be considered transient appears as a parameter to be determined for the particular system under study. As an alternative, a parameter-free method of a similar character is also proposed to estimate the mean residence time of particles that reached a constant probability of leaving the region of interest.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
residence time  
dc.subject
residual time  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Residence Times from Molecular Dynamics Simulations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-06-29T10:25:01Z  
dc.journal.volume
126  
dc.journal.number
43  
dc.journal.pagination
8804-8812  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Sánchez, Hernán Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.journal.title
Journal of Physical Chemistry B  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcb.2c03756  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcb.2c03756