Artículo
Predicting future sedentary behaviour using wearable and mobile devices
Fecha de publicación:
11/2022
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Information Processing & Management
ISSN:
0306-4573
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Sedentarism is a common problem that can affect human health and wellbeing. Predicting sedentary behaviour is an emerging area that can benefit from data collected from sensors available in ubiquitous devices, such as wearables and smartphones. In this paper, we present an approach aiming at predicting the sedentary behaviour of a user from data collected from sensors installed in wearable/mobile devices. We compare personal and impersonal models using a real-life dataset consisting of sensing data of 48 users during 10 weeks. We found that impersonal models using Deep Neural Networks were able to accurately predict the subject's future sedentary behaviour.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Santillán Cooper, Martín; Armentano, Marcelo Gabriel; Predicting future sedentary behaviour using wearable and mobile devices; Pergamon-Elsevier Science Ltd; Information Processing & Management; 59; 6; 11-2022; 1-27
Compartir
Altmétricas