Mostrar el registro sencillo del ítem

dc.contributor.author
Tommasel, Antonela  
dc.contributor.author
Diaz Pace, Jorge Andres  
dc.date.available
2023-09-20T16:12:58Z  
dc.date.issued
2022-10  
dc.identifier.citation
Tommasel, Antonela; Diaz Pace, Jorge Andres; Identifying emerging smells in software designs based on predicting package dependencies; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 115; 10-2022; 1-17  
dc.identifier.issn
0952-1976  
dc.identifier.uri
http://hdl.handle.net/11336/212353  
dc.description.abstract
Software systems naturally evolve, and this evolution often brings design problems that contribute to system degradation. Architectural smells are typical symptoms of such problems, and several of these smells are related to undesired dependencies among packages. The early detection of smells is essential for software engineers to plan ahead for maintenance or refactoring efforts. Although tools for identifying smells exist, they detect the smells once they already exist in the source code when their undesired dependencies are already created. In this work, we explore a forward-looking approach for identifying smells that can emerge in the next system version based on inferring package dependencies that are likely to appear in the system. Our approach takes the current design structure of the system as a network, along with information from previous versions, and applies link prediction techniques from the field of social network analysis. In particular, we consider a group of smells known as instability smells (cyclic dependency, hub-like dependency, and unstable dependency), which fit well with the link prediction model. The approach includes a feedback mechanism to progressively reduce false positives in predictions. An evaluation based on six open-source projects showed that, under certain considerations, the proposed approach can satisfactorily predict missing dependencies and smell configurations thereof. The feedback mechanism led to improvements of up to three times the initial precision values. Furthermore, we have developed a tool for practitioners to apply the approach in their projects.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARCHITECTURAL SMELLS  
dc.subject
CYCLES  
dc.subject
LINK PREDICTION  
dc.subject
MACHINE LEARNING  
dc.subject
PACKAGE DEPENDENCIES  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Identifying emerging smells in software designs based on predicting package dependencies  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-31T15:16:16Z  
dc.journal.volume
115  
dc.journal.pagination
1-17  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Engineering Applications Of Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0952197622002998  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.engappai.2022.105209