Mostrar el registro sencillo del ítem

dc.contributor.author
Merk, Timon  
dc.contributor.author
Peterson, Victoria  
dc.contributor.author
Köhler, Richard  
dc.contributor.author
Haufe, Stefan  
dc.contributor.author
Richardson, R. Mark  
dc.contributor.author
Neumann, Wolf Julian  
dc.date.available
2023-09-20T16:11:21Z  
dc.date.issued
2022-05  
dc.identifier.citation
Merk, Timon; Peterson, Victoria; Köhler, Richard; Haufe, Stefan; Richardson, R. Mark; et al.; Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation; Academic Press Inc Elsevier Science; Experimental Neurology; 351; 5-2022; 1-17  
dc.identifier.issn
0014-4886  
dc.identifier.uri
http://hdl.handle.net/11336/212352  
dc.description.abstract
Sensing enabled implantable devices and next-generation neurotechnology allow real-time adjustments of invasive neuromodulation. The identification of symptom and disease-specific biomarkers in invasive brain signal recordings has inspired the idea of demand dependent adaptive deep brain stimulation (aDBS). Expanding the clinical utility of aDBS with machine learning may hold the potential for the next breakthrough in the therapeutic success of clinical brain computer interfaces. To this end, sophisticated machine learning algorithms optimized for decoding of brain states from neural time-series must be developed. To support this venture, this review summarizes the current state of machine learning studies for invasive neurophysiology. After a brief introduction to the machine learning terminology, the transformation of brain recordings into meaningful features for decoding of symptoms and behavior is described. Commonly used machine learning models are explained and analyzed from the perspective of utility for aDBS. This is followed by a critical review on good practices for training and testing to ensure conceptual and practical generalizability for real-time adaptation in clinical settings. Finally, first studies combining machine learning with aDBS are highlighted. This review takes a glimpse into the promising future of intelligent adaptive DBS (iDBS) and concludes by identifying four key ingredients on the road for successful clinical adoption: i) multidisciplinary research teams, ii) publicly available datasets, iii) open-source algorithmic solutions and iv) strong world-wide research collaborations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ADAPTIVE DEEP BRAIN STIMULATION  
dc.subject
BRAIN-COMPUTER INTERFACE  
dc.subject
CLOSED-LOOP DBS  
dc.subject
MOVEMENT DISORDERS  
dc.subject
NEURAL DECODING  
dc.subject
REAL-TIME CLASSIFICATION  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T21:58:15Z  
dc.journal.volume
351  
dc.journal.pagination
1-17  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Merk, Timon. Charité – Universitätsmedizin Berlin; Alemania  
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Köhler, Richard. Charité – Universitätsmedizin Berlin; Alemania  
dc.description.fil
Fil: Haufe, Stefan. Charité – Universitätsmedizin Berlin; Alemania  
dc.description.fil
Fil: Richardson, R. Mark. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Neumann, Wolf Julian. Charité – Universitätsmedizin Berlin; Alemania  
dc.journal.title
Experimental Neurology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0014488622000188  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.expneurol.2022.113993