Mostrar el registro sencillo del ítem

dc.contributor.author
Alcaraz, Andrea  
dc.contributor.author
Pichón-riviere, Andres  
dc.contributor.author
Palacios, Alfredo  
dc.contributor.author
Bardach, Ariel Esteban  
dc.contributor.author
Balan, Dario Javier  
dc.contributor.author
Perelli, Lucas  
dc.contributor.author
Augustovski, Federico Ariel  
dc.contributor.author
Ciapponi, Agustín  
dc.date.available
2023-09-19T17:38:29Z  
dc.date.issued
2021-12  
dc.identifier.citation
Alcaraz, Andrea; Pichón-riviere, Andres; Palacios, Alfredo; Bardach, Ariel Esteban; Balan, Dario Javier; et al.; Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models; BioMed Central; BMC Public Health; 21; 1; 12-2021; 1-11  
dc.identifier.issn
1471-2458  
dc.identifier.uri
http://hdl.handle.net/11336/212145  
dc.description.abstract
Background: Around 184,000 deaths per year could be attributable to sugar-sweetened beverages (SSBs) consumption worldwide. Epidemiological and decision models are important tools to estimate disease burden. The purpose of this study was to identify models to assess the burden of diseases attributable to SSBs consumption or the potential impact of health interventions. Methods: We carried out a systematic review and literature search up to August 2018. Pairs of reviewers independently selected, extracted, and assessed the quality of the included studies through an exhaustive description of each model’s features. Discrepancies were solved by consensus. The inclusion criteria were epidemiological or decision models evaluating SSBs health interventions or policies, and descriptive SSBs studies of decision models. Studies published before 2003, cost of illness studies and economic evaluations based on individual patient data were excluded. Results: We identified a total of 2766 references. Out of the 40 included studies, 45% were models specifically developed to address SSBs, 82.5% were conducted in high-income countries and 57.5% considered a health system perspective. The most common model’s outcomes were obesity/overweight (82.5%), diabetes (72.5%), cardiovascular disease (60%), mortality (52.5%), direct medical costs (57.35%), and healthy years -DALYs/QALYs- (40%) attributable to SSBs. 67.5% of the studies modelled the effect of SSBs on the outcomes either entirely through BMI or through BMI plus diabetes independently. Models were usually populated with inputs from national surveys -such us obesity prevalence, SSBs consumption-; and vital statistics (67.5%). Only 55% reported results by gender and 40% included children; 30% presented results by income level, and 25% by selected vulnerable groups. Most of the models evaluated at least one policy intervention to reduce SSBs consumption (92.5%), taxes being the most frequent strategy (75%). Conclusions: There is a wide range of modelling approaches of different complexity and information requirements to evaluate the burden of disease attributable to SSBs. Most of them take into account the impact on obesity, diabetes and cardiovascular disease, mortality, and economic impact. Incorporating these tools to different countries could result in useful information for decision makers and the general population to promote a deeper implementation of policies to reduce SSBs consumption.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BioMed Central  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
BURDEN OF DISEASE  
dc.subject
DECISION MODELS  
dc.subject
ECONOMIC EVALUATIONS  
dc.subject
EPIDEMIOLOGICAL MODELS  
dc.subject
HEALTH POLICIES  
dc.subject
SUGAR SWEETENED BEVERAGES (SSBS)  
dc.subject.classification
Otras Ciencias de la Salud  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-09-19T13:10:54Z  
dc.journal.volume
21  
dc.journal.number
1  
dc.journal.pagination
1-11  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Alcaraz, Andrea. Instituto de Efectividad Clínica y Sanitaria; Argentina  
dc.description.fil
Fil: Pichón-riviere, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina  
dc.description.fil
Fil: Palacios, Alfredo. Instituto de Efectividad Clínica y Sanitaria; Argentina  
dc.description.fil
Fil: Bardach, Ariel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina  
dc.description.fil
Fil: Balan, Dario Javier. Instituto de Efectividad Clínica y Sanitaria; Argentina  
dc.description.fil
Fil: Perelli, Lucas. Instituto de Efectividad Clínica y Sanitaria; Argentina  
dc.description.fil
Fil: Augustovski, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina  
dc.description.fil
Fil: Ciapponi, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina  
dc.journal.title
BMC Public Health  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-021-11046-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s12889-021-11046-7