Mostrar el registro sencillo del ítem

dc.contributor.author
Larotonda, Gabriel Andrés  
dc.contributor.author
Miglioli, Martín Carlos  
dc.date.available
2023-09-19T15:35:03Z  
dc.date.issued
2023-05  
dc.identifier.citation
Larotonda, Gabriel Andrés; Miglioli, Martín Carlos; Hofer's metric in compact Lie groups; European Mathematical Society; Groups Geometry And Dynamics; 17; 3; 5-2023; 839–898  
dc.identifier.issn
1661-7207  
dc.identifier.uri
http://hdl.handle.net/11336/212087  
dc.description.abstract
In this article we study the Hofer geometry of a compact Lie group K which acts by Hamiltonian diffeomorphisms on a symplectic manifold M. Generalized Hofer norms on the Lie algebra of K are introduced and analyzed with tools from group invariant convex geometry, functional and matrix analysis. Several global results on the existence of geodesics and their characterization in finite dimensional Lie groups K endowed with bi-invariant Finsler metrics are proved. We relate the conditions for being a geodesic in the group K and in the group of Hamiltonian diffeomorphisms. These results are applied to obtain necessary and sufficient conditions on the moment polytope of the momentum map, for the commutativity of the Hamiltonians of geodesics. Particular cases are studied, where a generalized non-crossing of eigenvalues property of the Hamiltonians hold.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
European Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HOFER’S METRIC  
dc.subject
COMPACT LIE GROUP  
dc.subject
HAMILTONIAN ACTION  
dc.subject
MOMENT POLYTOPE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Hofer's metric in compact Lie groups  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-09-15T12:42:02Z  
dc.journal.volume
17  
dc.journal.number
3  
dc.journal.pagination
839–898  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Miglioli, Martín Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Groups Geometry And Dynamics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ems.press/doi/10.4171/GGD/721  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4171/GGD/721  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1907.09843