Mostrar el registro sencillo del ítem

dc.contributor.author
Ribeiro, Bruno R.  
dc.contributor.author
Guidoni Martins, Karlo  
dc.contributor.author
Tessarolo, Geiziane  
dc.contributor.author
Velazco, Santiago José Elías  
dc.contributor.author
Jardim, Lucas  
dc.contributor.author
Bachman, Steven P.  
dc.contributor.author
Loyola, Rafael  
dc.date.available
2023-09-19T15:15:19Z  
dc.date.issued
2022-09  
dc.identifier.citation
Ribeiro, Bruno R.; Guidoni Martins, Karlo; Tessarolo, Geiziane; Velazco, Santiago José Elías; Jardim, Lucas; et al.; Issues with species occurrence data and their impact on extinction risk assessments; Elsevier; Biological Conservation; 273; 9-2022; 1-9  
dc.identifier.issn
0006-3207  
dc.identifier.uri
http://hdl.handle.net/11336/212082  
dc.description.abstract
Species extinction risk status is critical to support conservation actions. However, full assessments published on the Red List are slow and resource intensive. To tackle assessments for mega-diverse groups, gains can be made through preliminary assessments that can help prioritize efforts toward full assessments. Here, we quantified how incomplete data collation and errors in the taxonomic, spatial, and temporal dimensions of species-occurrence data translate into misclassifications of extinction risk. Using a dataset of >30 million records of terrestrial plants occurring in Brazil compiled from nine databases we conducted preliminary risk assessments for ~94 % of the 6046 species assessed by the Brazilian Red List authority. We found that no unique database contained data sufficient to perform extinction risk assessment of all species; e.g., the risk of 78 % of species can be assessed using data from GBIF. The overall accuracy (66–75 %) and specificity (89–98 %, correct prediction of non-threatened species) were less affected by incomplete data collation and issues in species-occurrence records. Sensitivity rates (correct prediction of threatened species) were commonly low to moderate and strongly affected by incomplete data collation (13–47 %) and spatial issues (38 %). Our results demonstrate that species' preliminary risk assessments have high accuracy in identifying non-threatened species, even when data collection is low and in the presence of issues in species occurrence data highlighting that such an approach can be used to efficiently prioritize species for full Red List assessments. In addition, caution is needed before declaring a species as threatened without considering data collation intensity and quality.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIODIVERSITY DATA  
dc.subject
DATA QUALITY  
dc.subject
FITNESS-FOR-USE  
dc.subject
GBIF  
dc.subject
PLANTS  
dc.subject
RAPID EXTINCTION RISK ASSESSMENT  
dc.subject.classification
Conservación de la Biodiversidad  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Issues with species occurrence data and their impact on extinction risk assessments  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T21:56:53Z  
dc.journal.volume
273  
dc.journal.pagination
1-9  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Ribeiro, Bruno R.. Universidade Federal de Goiás; Brasil  
dc.description.fil
Fil: Guidoni Martins, Karlo. Universidade Federal de Goiás; Brasil  
dc.description.fil
Fil: Tessarolo, Geiziane. Universidade Federal de Goiás; Brasil  
dc.description.fil
Fil: Velazco, Santiago José Elías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Universidad Nacional de Misiones. Instituto de Biología Subtropical; Argentina. University of California; Estados Unidos. Universidade Federal da Integração Latinoamericana; Brasil  
dc.description.fil
Fil: Jardim, Lucas. Universidade Federal de Goiás; Brasil  
dc.description.fil
Fil: Bachman, Steven P.. Royal Botanic Gardens; Reino Unido  
dc.description.fil
Fil: Loyola, Rafael. Instituto Internacional Para Sustentabilidade; Brasil. Universidade Federal de Goiás; Brasil  
dc.journal.title
Biological Conservation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0006320722002270  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.biocon.2022.109674