Mostrar el registro sencillo del ítem
dc.contributor.author
Díaz, Gastón Mauro
dc.contributor.author
Lencinas, José Daniel
dc.date.available
2017-07-24T19:26:19Z
dc.date.issued
2015-03
dc.identifier.citation
Díaz, Gastón Mauro; Lencinas, José Daniel; Enhanced gap fraction extraction from hemispherical photography; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 12; 8; 3-2015; 1785-1789
dc.identifier.issn
1545-598X
dc.identifier.uri
http://hdl.handle.net/11336/21201
dc.description.abstract
Canopy structure can be estimated using gap fraction (GF) data, which can be directly measured with hemispherical photography. However, GF data accuracy is affected by sunlit canopy, multiple scattering, vignetting, blooming, and chromatic aberration. Here, we present an algorithm to classify hemispherical photography, whose aim is to reduce errors in the extraction of GF data. The algorithm, which was implemented in free software, uses color transformations, fuzzy logic, and object-based image analysis. The results suggest that color and texture, rather that only brightness, can be used to extract GF data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Forestry
dc.subject
Fuzzy Logic
dc.subject
Fisheye Photography
dc.subject
Image Classification
dc.subject
Image Texture Analysis
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Enhanced gap fraction extraction from hemispherical photography
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-20T14:21:23Z
dc.identifier.eissn
1558-0571
dc.journal.volume
12
dc.journal.number
8
dc.journal.pagination
1785-1789
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Díaz, Gastón Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Lencinas, José Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Ieee Geoscience and Remote Sensing Letters
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7103294/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/LGRS.2015.2425931
Archivos asociados