Artículo
APRANK: Computational Prioritization of Antigenic Proteins and Peptides From Complete Pathogen Proteomes
Ricci, Alejandro Daniel
; Brunner, Mauricio; Ramoa, Diego Nicolás; Carmona, Santiago Javier
; Nielsen, Morten
; Agüero, Fernan Gonzalo
Fecha de publicación:
07/2021
Editorial:
Frontiers Media
Revista:
Frontiers in Immunology
ISSN:
1664-3224
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Availability of highly parallelized immunoassays has renewed interest in the discovery of serology biomarkers for infectious diseases. Protein and peptide microarrays now provide a rapid, high-throughput platform for immunological testing and validation of potential antigens and B-cell epitopes. However, there is still a need for tools to prioritize and select relevant probes when designing these arrays. In this work we describe a computational method called APRANK (Antigenic Protein and Peptide Ranker) which integrates multiple molecular features to prioritize potentially antigenic proteins and peptides in a given pathogen proteome. These features include subcellular localization, presence of repetitive motifs, natively disordered regions, secondary structure, transmembrane spans and predicted interaction with the immune system. We trained and tested this method with a number of bacteria and protozoa causing human diseases: Borrelia burgdorferi (Lyme disease), Brucella melitensis (Brucellosis), Coxiella burnetii (Q fever), Escherichia coli (Gastroenteritis), Francisella tularensis (Tularemia), Leishmania braziliensis (Leishmaniasis), Leptospira interrogans (Leptospirosis), Mycobacterium leprae (Leprae), Mycobacterium tuberculosis (Tuberculosis), Plasmodium falciparum (Malaria), Porphyromonas gingivalis (Periodontal disease), Staphylococcus aureus (Bacteremia), Streptococcus pyogenes (Group A Streptococcal infections), Toxoplasma gondii (Toxoplasmosis) and Trypanosoma cruzi (Chagas Disease). We have evaluated this integrative method using non-parametric ROC-curves and made an unbiased validation using Onchocerca volvulus as an independent data set. We found that APRANK is successful in predicting antigenicity for all pathogen species tested, facilitating the production of antigen-enriched protein subsets. We make APRANK available to facilitate the identification of novel diagnostic antigens in infectious diseases.
Palabras clave:
ANTIGENICITY
,
ANTIGENS
,
HUMAN PATHOGENS
,
LINEAR EPITOPES
,
PREDICTION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IIBIO)
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Citación
Ricci, Alejandro Daniel; Brunner, Mauricio; Ramoa, Diego Nicolás; Carmona, Santiago Javier; Nielsen, Morten; et al.; APRANK: Computational Prioritization of Antigenic Proteins and Peptides From Complete Pathogen Proteomes; Frontiers Media; Frontiers in Immunology; 12; 7-2021; 1-16
Compartir
Altmétricas