Mostrar el registro sencillo del ítem

dc.contributor.author
Schrauf, Matías Florián  
dc.contributor.author
de los Campos, Gustavo  
dc.contributor.author
Munilla Leguizamon, Sebastian  
dc.date.available
2023-09-15T19:41:55Z  
dc.date.issued
2021-11  
dc.identifier.citation
Schrauf, Matías Florián; de los Campos, Gustavo; Munilla Leguizamon, Sebastian; Comparing Genomic Prediction Models by Means of Cross Validation; Frontiers Media; Frontiers in Plant Science; 12; 734512; 11-2021; 1-11  
dc.identifier.uri
http://hdl.handle.net/11336/211734  
dc.description.abstract
In the two decades of continuous development of genomic selection, a great variety of models have been proposed to make predictions from the information available in dense marker panels. Besides deciding which particular model to use, practitioners also need to make many minor choices for those parameters in the model which are not typically estimated by the data (so called “hyper-parameters”). When the focus is placed on predictions, most of these decisions are made in a direction sought to optimize predictive accuracy. Here we discuss and illustrate using publicly available crop datasets the use of cross validation to make many such decisions. In particular, we emphasize the importance of paired comparisons to achieve high power in the comparison between candidate models, as well as the need to define notions of relevance in the difference between their performances. Regarding the latter, we borrow the idea of equivalence margins from clinical research and introduce new statistical tests. We conclude that most hyper-parameters can be learnt from the data by either minimizing REML or by using weakly-informative priors, with good predictive results. In particular, the default options in a popular software are generally competitive with the optimal values. With regard to the performance assessments themselves, we conclude that the paired k-fold cross validation is a generally applicable and statistically powerful methodology to assess differences in model accuracies. Coupled with the definition of equivalence margins based on expected genetic gain, it becomes a useful tool for breeders.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Frontiers Media  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
CROSS VALIDATION  
dc.subject
GENOMIC MODELS  
dc.subject
GENOMIC SELECTION  
dc.subject
MODEL SELECTION  
dc.subject
PLANT BREEDING  
dc.subject.classification
Agronomía, reproducción y protección de plantas  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Comparing Genomic Prediction Models by Means of Cross Validation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-09-14T17:34:51Z  
dc.identifier.eissn
1664-462X  
dc.journal.volume
12  
dc.journal.number
734512  
dc.journal.pagination
1-11  
dc.journal.pais
Suiza  
dc.journal.ciudad
Lausana  
dc.description.fil
Fil: Schrauf, Matías Florián. University of Agriculture Wageningen; Países Bajos. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; Argentina  
dc.description.fil
Fil: de los Campos, Gustavo. Michigan State University; Estados Unidos  
dc.description.fil
Fil: Munilla Leguizamon, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.journal.title
Frontiers in Plant Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fpls.2021.734512/full  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fpls.2021.734512