Mostrar el registro sencillo del ítem
dc.contributor.author
Quiroga Andiñach, Miriana Esther
dc.contributor.author
Garay, Pablo Germán
dc.contributor.author
Alonso, Juan Manuel
dc.contributor.author
Loyola, Juan Martin
dc.contributor.author
Martín, Osvaldo Antonio
dc.date.available
2023-09-15T13:59:25Z
dc.date.issued
2022-06
dc.identifier.citation
Quiroga Andiñach, Miriana Esther; Garay, Pablo Germán; Alonso, Juan Manuel; Loyola, Juan Martin; Martín, Osvaldo Antonio; Bayesian additive regression trees for probabilistic programming; Cornell University; arXiv; 1; 6-2022; 1-17
dc.identifier.issn
2331-8422
dc.identifier.uri
http://hdl.handle.net/11336/211656
dc.description.abstract
Bayesian additive regression trees (BART) is a non-parametric method to approximate functions. It is a black-box method based on the sum of many trees where priors are used to regularize inference, mainly by restricting trees’ learning capacity so that no individual tree is able to explain the data, but rather the sum of trees. We discuss BART in the context of probabilistic programming languages (PPLs), specifically we introduce a BART implementation extending PyMC, a Python library for probabilistic programming. We present a few examples of models that can be built using this probabilistic programming-oriented version of BART, discuss recommendations for sample diagnostics and selection of model hyperparameters, and finally we close with limitations of the current approach and future extensions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cornell University
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BAYESIAN INFERENCE
dc.subject
NON-PARAMETRICS
dc.subject
PYMC
dc.subject
PYTHON
dc.subject
BINARY TREES
dc.subject
ENSEMBLE METHOD
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Bayesian additive regression trees for probabilistic programming
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-18T15:19:24Z
dc.journal.volume
1
dc.journal.pagination
1-17
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Quiroga Andiñach, Miriana Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.description.fil
Fil: Garay, Pablo Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.description.fil
Fil: Alonso, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.description.fil
Fil: Loyola, Juan Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.description.fil
Fil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.journal.title
arXiv
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2206.03619
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.48550/arXiv.2206.03619
Archivos asociados