Mostrar el registro sencillo del ítem

dc.contributor.author
Hoyos, J. D.  
dc.contributor.author
Villa Tamayo, M. F.  
dc.contributor.author
Builes Montano, C. E.  
dc.contributor.author
Ramirez Rincon, A.  
dc.contributor.author
Godoy, José Luis  
dc.contributor.author
Garcia Tirado, J.  
dc.contributor.author
Rivadeneira Paz, Pablo Santiago  
dc.date.available
2023-09-15T12:39:55Z  
dc.date.issued
2021-04  
dc.identifier.citation
Hoyos, J. D.; Villa Tamayo, M. F.; Builes Montano, C. E.; Ramirez Rincon, A.; Godoy, José Luis; et al.; Identifiability of Control-Oriented Glucose-Insulin Linear Models: Review and Analysis; Institute of Electrical and Electronics Engineers; IEEE Access; 9; 4-2021; 69173-69188  
dc.identifier.issn
2169-3536  
dc.identifier.uri
http://hdl.handle.net/11336/211622  
dc.description.abstract
One of the main challenges of glucose control in patients with type 1 diabetes is identifying a control-oriented model that reliably predicts the behavior of glycemia. Here, a review is provided emphasizing the structural identifiability and observability properties, which surprisingly reveals that few of them are globally identifiable and observable at the same time. Thus, a general proposal was developed to encompass four linear models according to suitable assumptions and transformations. After the corresponding structural properties analysis, two minimal model structures are generated, which are globally identifiable and observable. Then, the practical identifiability is analyzed for this application showing that the standard collected data in many cases do not have the necessary quality to ensure a unique solution in the identification process even when a considerable amount of data is collected. The two minimal control-oriented models were identified using a standard identification procedure using data from 30 virtual patients of the UVA/Padova simulator and 77 diabetes care data from adult patients of a diabetes center. The identification was performed in two stages: calibration and validation. In the first stage, the average length was taken as two days (dictated by the practical identifiability). For both structures, the mean absolute error was 16.8 mg/dl and 9.9 mg/dl for virtual patients and 21.6 mg/dl and 21.5 mg/dl for real patients. For the second stage, a one-day validation window was considered long enough for future artificial pancreas applications. The mean absolute error was 23.9 mg/dl and 12.3 mg/dl for virtual patients and 39.2 mg/dl and 36.6 mg/dl for virtual and real patients. These results confirm that linear models can be used as prediction models in model-based control strategies as predictive control.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOMEDICAL SYSTEMS  
dc.subject
GLUCOSE DYNAMICS  
dc.subject
IDENTIFIABILITY  
dc.subject
MODEL IDENTIFICATION  
dc.subject
PRACTICAL INDENTIFIABILITY  
dc.subject.classification
Otras Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Identifiability of Control-Oriented Glucose-Insulin Linear Models: Review and Analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-09-13T12:08:07Z  
dc.journal.volume
9  
dc.journal.pagination
69173-69188  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Hoyos, J. D.. Universidad Nacional de Colombia. Sede Medellín; Colombia  
dc.description.fil
Fil: Villa Tamayo, M. F.. Universidad Nacional de Colombia. Sede Medellín; Colombia  
dc.description.fil
Fil: Builes Montano, C. E.. Universidad de Antioquia; Colombia  
dc.description.fil
Fil: Ramirez Rincon, A.. Universidad Pontificia Bolivariana; Colombia  
dc.description.fil
Fil: Godoy, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Garcia Tirado, J.. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
IEEE Access  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ACCESS.2021.3076405