Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Meal detection and carbohydrate estimation based on a feedback scheme with application to the artificial pancreas

Godoy, José LuisIcon ; Sereno Mesa, Juan EstebanIcon ; Rivadeneira Paz, Pablo SantiagoIcon
Fecha de publicación: 05/2021
Editorial: Elsevier
Revista: Biomedical Signal Processing and Control
ISSN: 1746-8094
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Médica

Resumen

Current glucose control systems automatically regulate basal insulin infusion, but users still need to manually announce meals (major disturbances) to dose prandial insulin boluses. This issue needs to be solved to reach a fully automated artificial pancreas. Automatic meal detection and carbohydrate amount estimation from readings of blood glucose (BG) and insulin infusion can improve the artificial pancreas control system from two possible paths: (i) the off-line reconstruction of the carbohydrate intake signal which allows a reliable identification of a control-relevant model, and (ii) the on-line prediction of meal onset and amount of carbohydrates ingested, which allows safety supervision of manually entered meal announcements. The aim of this work is the item (i), for which an automatic algorithm is developed to detect the consumption of a meal and estimate its carbohydrate amount in people with type 1 diabetes. The unknown input estimation is based on a feedback scheme where the measured BG is compared with a BG prediction. Glycemic behavior is predicted using a personalized model by means of the patient's functional insulin therapy parameters defined by the treating physician. The proposed algorithm is evaluated with data extracted from the 30-patient cohort of the UVA/Padova simulator approved by the FDA and with retrospective data from 11 real patients of a diabetes center. Diabetes care data from free-living adult patients were collected during regular screening and the meals were identified by experts. For the in silico dataset, the detection accuracy is near 100%, the absolute error of the estimation of ingested carbohydrates is 10% on average, and the average bias of meal onset estimation is 5 min. For the clinical dataset, the meal detection performance is 98% and the estimation accuracy measures are 13% and 2 min, respectively. In this work, the impact of reconstructing the carbohydrate intake signal on the identification proved to be beneficial. In addition, the feedback scheme and the easily personalized prediction model make the strategy efficient.
Palabras clave: ARTIFICIAL PANCREAS , CARBOHYDRATE ESTIMATION , FEEDBACK BASED-ESTIMATION , MEAL DETECTION , PHYSIOLOGICAL MODEL , TYPE 1 DIABETES MELLITUS
Ver el registro completo
 
Archivos asociados
Tamaño: 4.884Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/211587
DOI: http://dx.doi.org/10.1016/j.bspc.2021.102715
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Godoy, José Luis; Sereno Mesa, Juan Esteban; Rivadeneira Paz, Pablo Santiago; Meal detection and carbohydrate estimation based on a feedback scheme with application to the artificial pancreas; Elsevier; Biomedical Signal Processing and Control; 68; 5-2021; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES