Artículo
LiveDewStream: A stream processing platform for running in-lab distributed deep learning inferences on smartphone clusters at the edge
Mateos Diaz, Cristian Maximiliano
; Hirsch, Mailén
; Toloza, Juan Manuel
; Zunino Suarez, Alejandro Octavio
Fecha de publicación:
12/2022
Editorial:
Elsevier
Revista:
SoftwareX
e-ISSN:
2352-7110
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Dew computing, an evolution of Fog computing, aims at fulfilling computing needs, such as deep learning applied to object classification, close to where data is originated and using computing resources that include consumer electronic devices such as smartphones. Simulation tools like DewSim aid the study of resource allocation mechanisms for exploiting clusters of smartphones, however, there is a gap w.r.t software tools that allow to perform similar studies over real Dew computing testbeds. We have developed LiveDewStream, an open source project to model executable tasks derived from data streams to be run on real smartphone clusters. The project offers a key functionality missing in other tools: reproducibility of battery-driven Dew experiments. Our major contribution is to provide the community a common in vivo platform to study best-performing allocation mechanisms under different stream processing scenarios and/or deep learning inference models.
Palabras clave:
MOBILE DEVICES
,
STREAM PROCESSING
,
DEEP LEARNING
,
DEW COMPUTING
,
ANDROID
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Mateos Diaz, Cristian Maximiliano; Hirsch, Mailén; Toloza, Juan Manuel; Zunino Suarez, Alejandro Octavio; LiveDewStream: A stream processing platform for running in-lab distributed deep learning inferences on smartphone clusters at the edge; Elsevier; SoftwareX; 20; 12-2022; 1-6
Compartir
Altmétricas