Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter

Fonseca, Mauro; Delbianco, Fernando AndrésIcon ; Maguitman, Ana GabrielaIcon ; Soto, Axel JuanIcon
Fecha de publicación: 30/03/2023
Editorial: Sage Publications Ltd
Revista: Journal Of Information Science
ISSN: 0165-5515
e-ISSN: 1741-6485
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Although the identification of topics and sentiments from social media content has attracted substantial research, little work has been carried out on the extraction of causal relationships among those topics and sentiments. This article proposes a methodology aimed at building a causal graph where nodes represent topics and emotions extracted from social media users? posts. To illustrate the proposed methodology, we collected a large multi-year dataset of tweets related to different editions of the G20 summit, which was locally indexed for further analysis. Topic-relevant queries are crafted from phrases extracted by experts from G20 output documents on four main recurring topics, namely government, society, environment and health and economics. Subsequently, sentiments are identified on the retrieved tweets using a lexicon based on Plutchik?s wheel of emotions. Finally, a causality test that uses stochastic dominance is applied to build a causal graph among topics and emotions by exploiting the asymmetries of explaining a variable from other variables. The applied causality discovery process relies on observational data only and does not require any assumptions of linearity, parametric definitions or temporal precedence. In our analysis, we observe that although the time series of topics and emotions always show high correlation coefficients, stochastic causality provides a means to tell apart causal relationships from other forms of associations. The proposed methodology can be applied to better understand social behaviour on social media, offering support to decision and policy making and their communication by government leaders.
Palabras clave: CASUALITY , G20 , SENTIMENT ANALYSIS , SOCIAL MEDIA , STOCHASTIC DOMINACE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.955Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/211125
URL: https://journals.sagepub.com/doi/10.1177/01655515231160034
DOI: http://dx.doi.org/10.1177/01655515231160034
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Fonseca, Mauro; Delbianco, Fernando Andrés; Maguitman, Ana Gabriela; Soto, Axel Juan; Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter; Sage Publications Ltd; Journal Of Information Science; 30-3-2023; 1-16
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES