Artículo
Secondary structure prediction of long noncoding RNA: review and experimental comparison of existing approaches
Bugnon, Leandro Ariel
; Edera, A. A.; Prochetto, Santiago
; Gerard, M.; Raad, Jonathan
; Fenoy, E.; Rubiolo, M.; Chorostecki, U.; Gabaldón, T.; Ariel, Federico Damian
; Di Persia, Leandro Ezequiel
; Milone, Diego Humberto
; Stegmayer, Georgina
Fecha de publicación:
06/2022
Editorial:
Oxford University Press
Revista:
Briefings In Bioinformatics
ISSN:
1467-5463
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Motivation: In contrast to messenger RNAs, the function of the wide range of existing long noncoding RNAs (lncRNAs) largely depends on their structure, which determines interactions with partner molecules. Thus, the determination or prediction of the secondary structure of lncRNAs is critical to uncover their function. Classical approaches for predicting RNA secondary structure have been based on dynamic programming and thermodynamic calculations. In the last 4 years, a growing number of machine learning (ML)-based models, including deep learning (DL), have achieved breakthrough performance in structure prediction of biomolecules such as proteins and have outperformed classical methods in short transcripts folding. Nevertheless, the accurate prediction for lncRNA still remains far from being effectively solved. Notably, the myriad of new proposals has not been systematically and experimentally evaluated. Results: In this work, we compare the performance of the classical methods as well as the most recently proposed approaches for secondary structure prediction of RNA sequences using a unified and consistent experimental setup. We use the publicly available structural profiles for 3023 yeast RNA sequences, and a novel benchmark of well-characterized lncRNA structures from different species. Moreover, we propose a novel metric to assess the predictive performance of methods, exclusively based on the chemical probing data commonly used for profiling RNA structures, avoiding any potential bias incorporated by computational predictions when using dot-bracket references. Our results provide a comprehensive comparative assessment of existing methodologies, and a novel and public benchmark resource to aid in the development and comparison of future approaches.
Palabras clave:
COMPUTATIONAL PREDICTION
,
LNCRNA
,
RNA SECONDARY STRUCTURE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Bugnon, Leandro Ariel; Edera, A. A.; Prochetto, Santiago; Gerard, M.; Raad, Jonathan; et al.; Secondary structure prediction of long noncoding RNA: review and experimental comparison of existing approaches; Oxford University Press; Briefings In Bioinformatics; 23; 4; 6-2022; 1-14
Compartir
Altmétricas