Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A robust computational approach for jaw movement detection and classification in grazing cattle using acoustic signals

Martínez Rau, Luciano SebastiánIcon ; Chelotti, Jose OmarIcon ; Vanrell, Sebastián RodrigoIcon ; Galli, Julio Ricardo; Utsumi, Santiago A.; Planisich, Alejandra M.; Rufiner, Hugo LeonardoIcon ; Giovanini, Leonardo LuisIcon
Fecha de publicación: 01/2022
Editorial: Elsevier
Revista: Computers and Eletronics in Agriculture
ISSN: 0168-1699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Monitoring behaviour of the grazing livestock is a difficult task because of its demanding requirements (continuous operation, large amount of information, computational efficiency, device portability, precision and accuracy) under harsh environmental conditions. Detection and classification of jaw movements (JM) events are essential for estimating information related with foraging behaviour. Acoustic monitoring is the best way to classify and quantify ruminant events related with its foraging behaviour. Although existing acoustic methods are computationally efficient, a common failure for broad applications is the deal with interference associated with environmental noises. In this work, the acoustic method, called Chew-Bite Energy Based Algorithm (CBEBA), is proposed to automatically detect and classify masticatory events of grazing cattle. The system incorporates computations of instantaneous power signal for JM-events classification associated with chews, bites and composite chew-bites, and additionally between two classes of chew events: i) low energy chews that are associated with rumination and ii) high energy chews that are associated with grazing. The results demonstrate that CBEBA achieve a recognition rate of 91.9% and 91.6% in noiseless and noisy conditions, respectively, with a high classification precision and a marginal increment of computational cost compared to previous algorithms, suggesting feasibility for implementation in low-cost embedded systems.
Palabras clave: ACOUSTIC MONITORING , CATTLE GRAZING BEHAVIOUR , JAW MOVEMENT CLASSIFICATION , NOISE ROBUSTNESS , PATTERN RECOGNITION , SOUND ENERGY ANALYSIS
Ver el registro completo
 
Archivos asociados
Tamaño: 2.610Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/210989
URL: https://www.sciencedirect.com/science/article/pii/S016816992100586X
DOI: http://dx.doi.org/10.1016/j.compag.2021.106569
Colecciones
Articulos(IICAR)
Articulos de INST. DE INVESTIGACIONES EN CIENCIAS AGRARIAS DE ROSARIO
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Martínez Rau, Luciano Sebastián; Chelotti, Jose Omar; Vanrell, Sebastián Rodrigo; Galli, Julio Ricardo; Utsumi, Santiago A.; et al.; A robust computational approach for jaw movement detection and classification in grazing cattle using acoustic signals; Elsevier; Computers and Eletronics in Agriculture; 192; 1-2022; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES