Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Feasibility in Real-Time Optimization Under Model Uncertainty: The Use of Lipschitz Bounds

Marchetti, Alejandro GabrielIcon
Fecha de publicación: 02/2022
Editorial: Pergamon-Elsevier Science Ltd
Revista: Computers and Chemical Engineering
ISSN: 0098-1354
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

In real-time optimization (RTO), feedback information from the plant is used to compensate for model uncertainty. Feasibility upon convergence can be guaranteed by simply adding bias correction terms to the constraints predicted by the model. However, the RTO solutions obtained prior to convergence may violate the plant constraints in the presence of model uncertainty. The use of constraint upper-bounding functions based on Lipschitz continuity assumptions has been proposed as a means to ensure the satisfaction of constraints. This paper presents a comparative study between three different types of Lipschitz bounds for providing theoretical feasibility guarantees in different RTO schemes. Based on a novel Lipschitz bound on the constraint modeling error, robust RTO algorithms are proposed for the two model adaptation strategies that are most commonly employed in industrial RTO practice, which are the constraint–adaptation and parameter-adaptation schemes. A robust modifier-adaptation algorithm is also studied.
Palabras clave: CONSTRAINT UPPER BOUNDS , FEASIBLE-SIDE CONVERGENCE , LIPSCHITZ BOUNDS , MODEL UNCERTAINTY , REAL-TIME OPTIMIZATION
Ver el registro completo
 
Archivos asociados
Tamaño: 830.0Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/210947
URL: https://www.sciencedirect.com/science/article/pii/S0098135422003891
DOI: http://dx.doi.org/10.1016/j.compchemeng.2022.108057
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Marchetti, Alejandro Gabriel; Feasibility in Real-Time Optimization Under Model Uncertainty: The Use of Lipschitz Bounds; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 168; 2-2022; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES