Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

‎Gautama and Almost Gautama Algebras and their associated logics

Cornejo, Juan ManuelIcon ; Sankappanavar, Hanamantagouda P.
Fecha de publicación: 01/06/2023
Editorial: Islamic Azad University
Revista: Transactions on Fuzzy Sets and Systems
e-ISSN: 2821-0131
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Recently, Gautama algebras were defined and investigated as a common generalization of the variety $\mathbb{RDBLS}\rm t$ of regular double Stone algebras and the variety $\mathbb{RKLS}\rm t$ of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called ``Almost Gautama algebras ($\mathbb{AG}$, for short).'' More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of $\mathbb{AG}$ and the equational bases for all its subvarieties are given. It is also shown that the variety $\mathbb{AG}$ is a discriminator variety. Next, we consider logicizing $\mathbb{AG}$; but the variety $\mathbb{AG}$ lacks an implication operation. We, therefore, introduce another variety of algebras called ``Almost Gautama Heyting algebras'' ($\mathbb{AGH}$, for short) and show that the variety $\mathbb{AGH}$ %of Almost Heyting algebras is term-equivalent to that of $\mathbb{AG}$. Next, a propositional logic, called $\mathcal{AG}$ (or $\mathcal{AGH}$), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety $\mathbb{AG}$, via $\mathbb{AGH},$ as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic $\mathcal{AG}$, corresponding to all the subvarieties of $\mathbb{AG}$ are given. They include the axiomatic extensions $\mathcal{RDBLS}t$, $\mathcal{RKLS}t$ and $\mathcal{G}$ of the logic $\mathcal{AG}$ corresponding to the varieties $\mathbb{RDBLS}\rm t$, $\mathbb{RKLS}\rm t$, and $\mathbb{G}$ (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of $\mathcal{AG}$ has the Disjunction Property. Finally, We revisit the classical logic with strong negation $\mathcal{CN}$ and classical Nelson algebras $\mathbb{CN}$ introduced by Vakarelov in 1977 and improve his results by showing that $\mathcal{CN}$ is algebraizable with $\mathbb{CN}$ as its algebraic semantics and that the logics $\mathcal{RKLS}\rm t$, $\mathcal{RKLS}\rm t\mathcal{H}$, 3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent.
Palabras clave: REGULAR DOUBLE STONE ALGEBRA , REGULAR KLEENE STONE ALGEBRA , GAUTAMA ALGEBRA
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 347.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/210843
URL: https://tfss.journals.iau.ir/article_702416.html
DOI: http://dx.doi.org/ 10.30495/TFSS.2023.1983060.1068
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; ‎Gautama and Almost Gautama Algebras and their associated logics; Islamic Azad University; Transactions on Fuzzy Sets and Systems; 2; 2; 1-6-2023; 1-36
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES