Mostrar el registro sencillo del ítem
dc.contributor.author
Aidelman, Yael Judith
dc.contributor.author
Escudero, Carlos Gabriel
dc.contributor.author
Ronchetti, Franco
dc.contributor.author
Quiroga, Facundo
dc.contributor.author
Lanzarini, Laura
dc.date.available
2023-09-07T14:32:20Z
dc.date.issued
2020
dc.identifier.citation
Reddening-Free Q Indices to Identify Be Star Candidates; 8th Conference on Cloud Computing, Big Data & Emerging Topics; Argentina; 2020; 1-13
dc.identifier.isbn
978-3-030-61218-4
dc.identifier.uri
http://hdl.handle.net/11336/210830
dc.description.abstract
Astronomical databases currently provide high-volume spectroscopic and photometric data. While spectroscopic data is better suited to the analysis of many astronomical objects, photometric data is relatively easier to obtain due to shorter telescope usage time. Therefore, there is a growing need to use photometric information to automatically identify objects for further detailed studies, specially Hα emission line stars such as Be stars. Photometric color-color diagrams (CCDs) are commonly used to identify this kind of objects. However, their identification in CCDs is further complicated by the reddening effect caused by both the circumstellar and interstellar gas. This effect prevents the generalization of candidate identification systems. Therefore, in this work we evaluate the use of neural networks to identify Be star candidates from a set of OB-type stars. The networks are trained using a labeled subset of the VPHAS+ and 2MASS databases, with filters u, g, r, Hα, i, J, H, and K. In order to avoid the reddening effect, we propose and evaluate the use of reddening-free Q indices to enhance the generalization of the model to other databases and objects. To test the validity of the approach, we manually labeled a subset of the database, and use it to evaluate candidate identification models. We also labeled an independent dataset for cross dataset evaluation. We evaluate the recall of the models at a 99% precision level on both test sets. Our results show that the proposed features provide a significant improvement over the original filter magnitudes.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MACHINE LEARNING
dc.subject
Be STARS
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Reddening-Free Q Indices to Identify Be Star Candidates
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-02-16T10:11:02Z
dc.journal.pagination
1-13
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Aidelman, Yael Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
dc.description.fil
Fil: Escudero, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
dc.description.fil
Fil: Ronchetti, Franco. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
dc.description.fil
Fil: Quiroga, Facundo. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina
dc.description.fil
Fil: Lanzarini, Laura. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1007/978-3-030-61218-4_8
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Nacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
8th Conference on Cloud Computing, Big Data & Emerging Topics
dc.date.evento
2020-09
dc.description.paisEvento
Argentina
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Conference on Cloud Computing, Big Data & Emerging Topics
dc.source.libro
Cloud Computing, Big Data & Emerging Topics
dc.type
Conferencia
Archivos asociados