Mostrar el registro sencillo del ítem

dc.contributor.author
Aidelman, Yael Judith  
dc.contributor.author
Escudero, Carlos Gabriel  
dc.contributor.author
Ronchetti, Franco  
dc.contributor.author
Quiroga, Facundo  
dc.contributor.author
Lanzarini, Laura  
dc.date.available
2023-09-07T14:32:20Z  
dc.date.issued
2020  
dc.identifier.citation
Reddening-Free Q Indices to Identify Be Star Candidates; 8th Conference on Cloud Computing, Big Data & Emerging Topics; Argentina; 2020; 1-13  
dc.identifier.isbn
978-3-030-61218-4  
dc.identifier.uri
http://hdl.handle.net/11336/210830  
dc.description.abstract
Astronomical databases currently provide high-volume spectroscopic and photometric data. While spectroscopic data is better suited to the analysis of many astronomical objects, photometric data is relatively easier to obtain due to shorter telescope usage time. Therefore, there is a growing need to use photometric information to automatically identify objects for further detailed studies, specially Hα emission line stars such as Be stars. Photometric color-color diagrams (CCDs) are commonly used to identify this kind of objects. However, their identification in CCDs is further complicated by the reddening effect caused by both the circumstellar and interstellar gas. This effect prevents the generalization of candidate identification systems. Therefore, in this work we evaluate the use of neural networks to identify Be star candidates from a set of OB-type stars. The networks are trained using a labeled subset of the VPHAS+ and 2MASS databases, with filters u, g, r, Hα, i, J, H, and K. In order to avoid the reddening effect, we propose and evaluate the use of reddening-free Q indices to enhance the generalization of the model to other databases and objects. To test the validity of the approach, we manually labeled a subset of the database, and use it to evaluate candidate identification models. We also labeled an independent dataset for cross dataset evaluation. We evaluate the recall of the models at a 99% precision level on both test sets. Our results show that the proposed features provide a significant improvement over the original filter magnitudes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MACHINE LEARNING  
dc.subject
Be STARS  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Reddening-Free Q Indices to Identify Be Star Candidates  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2023-02-16T10:11:02Z  
dc.journal.pagination
1-13  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Aidelman, Yael Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina  
dc.description.fil
Fil: Escudero, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina  
dc.description.fil
Fil: Ronchetti, Franco. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina  
dc.description.fil
Fil: Quiroga, Facundo. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina  
dc.description.fil
Fil: Lanzarini, Laura. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1007/978-3-030-61218-4_8  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Nacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
8th Conference on Cloud Computing, Big Data & Emerging Topics  
dc.date.evento
2020-09  
dc.description.paisEvento
Argentina  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Conference on Cloud Computing, Big Data & Emerging Topics  
dc.source.libro
Cloud Computing, Big Data & Emerging Topics  
dc.type
Conferencia