Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots

Montoya Cháirez, Jorge; Moreno Valenzuela, Javier; Santibáñez, Víctor; Carelli Albarracin, Ricardo OscarIcon ; Rossomando, Francisco GuidoIcon ; Pérez Alcocer, Ricardo
Fecha de publicación: 01/2022
Editorial: Institution of Engineering and Technology
Revista: IET Control Theory and Applications
ISSN: 1751-8644
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

By relying on the input–output feedback linearization approach, a novel adaptive controller for flexible joint robots is proposed in this work. First, a model-based controller is developed to get a structure that is useful in the development of the adaptive controller. The adaptive version is developed by using two techniques. To stabilize the output function, an adaptive neural network controller is used, which approximates the non-linear function that contains the uncertainties. The desired rotor position required by the input–output feedback linearization controller is defined with the structure of a link dynamics adaptive regressor-based controller. The main reason to adopt the mentioned structure in the definition of the desired rotor link position is to guarantee its differentiability. Real-time experiment comparisons among the model-based controller, a model-based controller with desired compensation, an adaptive controller based on joint torque feedback, and an adaptive neural network-based controller are carried out. Experimental results support the theory reported in this document and the accuracy of the proposed approach.
Palabras clave: Flexible robots , Adaptive neural networks , Trajectory control
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.322Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/210810
DOI: http://dx.doi.org/10.1049/cth2.12202
URL: https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cth2.12202
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Citación
Montoya Cháirez, Jorge; Moreno Valenzuela, Javier; Santibáñez, Víctor; Carelli Albarracin, Ricardo Oscar; Rossomando, Francisco Guido; et al.; Combined adaptive neural network and regressor-based trajectory tracking control of flexible joint robots; Institution of Engineering and Technology; IET Control Theory and Applications; 16; 1; 1-2022; 31-50
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES