Artículo
Statically identifying XSS using deep learning
Fecha de publicación:
07/2022
Editorial:
Elsevier Science
Revista:
Science of Computer Programming
ISSN:
0167-6423
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Cross-site Scripting (XSS) is ranked first in the top 25 Most Dangerous Software Weaknesses (2020) of Common Weakness Enumeration (CWE) and places this vulnerability as the most dangerous among programming errors. This work explores static approaches to detect XSS vulnerabilities using neural networks. We compare two different code representations based on Natural Language Processing (NLP) and Programming Language Processing (PLP) and experiment with models based on different neural network architectures for static analysis detection in PHP and Node.js. We train and evaluate the models using synthetic databases. Using the generated PHP and Node.js databases, we compare our results with three well-known static analyzers for PHP code, ProgPilot, Pixy, RIPS, and a known scanner for Node.js, AppScan static mode. Our analyzers using neural networks overperform the results of existing tools in all cases.
Palabras clave:
CROSS-SITE SCRIPTING
,
DEEP LEARNING
,
WEB ATTACKS
,
WEB SECURITY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Maurel, Heloise; Vidal, Santiago Agustín; Rezk, Tamara; Statically identifying XSS using deep learning; Elsevier Science; Science of Computer Programming; 219; 7-2022; 1-20
Compartir
Altmétricas