Artículo
Variable selection in the chemometric treatment of food data: A tutorial review
de Araújo Gomes, Adriano; Azcarate, Silvana Mariela
; Goncalves Dias Diniz, Paulo Henrique; de Sousa Fernandes, David Douglas; Veras, Germano
Fecha de publicación:
02/2022
Editorial:
Elsevier
Revista:
Food Chemistry
ISSN:
0308-8146
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Food analysis covers aspects of quality and detection of possible frauds to ensure the integrity of the food. The arsenal of analytical instruments available for food analysis is broad and allows the generation of a large volume of information per sample. But this instrumental information may not yet give the desired answer; it must be processed to provide a final answer for decision making. The possibility of discarding non-informative and/or redundant signals can lead to models of better accuracy, robustness, and chemical interpretability, in line with the principle of parsimony. Thus, in this tutorial review, we cover aspects of variable selection in food analysis, including definitions, theoretical aspects of variable selection, and case studies showing the advantages of variable selection-based models concerning the use of a wide range of non-informative and redundant instrumental information in the analysis of food matrices.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INCITAP)
Articulos de INST.D/CS D/L/TIERRA Y AMBIENTALES D/L/PAMPA
Articulos de INST.D/CS D/L/TIERRA Y AMBIENTALES D/L/PAMPA
Citación
de Araújo Gomes, Adriano; Azcarate, Silvana Mariela; Goncalves Dias Diniz, Paulo Henrique; de Sousa Fernandes, David Douglas; Veras, Germano; Variable selection in the chemometric treatment of food data: A tutorial review; Elsevier; Food Chemistry; 370; 2-2022; 1-13
Compartir
Altmétricas