Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Development and validation of nonattendance predictive models for scheduled adult outpatient appointments in different medical specialties

Giunta, Diego HernanIcon ; Huespe, Ivan Alfredo; Alonso Serena, Marina; Luna, Daniel RobertoIcon ; Gonzalez Bernaldo de Quirós, Fernan
Fecha de publicación: 11/2022
Editorial: John Wiley & Sons
Revista: International Journal of Health Planning and Management
ISSN: 0749-6753
e-ISSN: 1099-1751
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Salud

Resumen

Introduction: Nonattendance is a critical problem that affects health care worldwide. Our aim was to build and validate predictive models of nonattendance in all outpatients appointments, general practitioners, and clinical and surgical specialties. Methods: A cohort study of adult patients, who had scheduled outpatient appointments for General Practitioners, Clinical and Surgical specialties, was conducted between January 2015 and December 2016, at the Italian Hospital of Buenos Aires. We evaluated potential predictors grouped in baseline patient characteristics, characteristics of the appointment scheduling process, patient history, characteristics of the appointment, and comorbidities. Patients were divided between those who attended their appointments, and those who did not. We generated predictive models for nonattendance for all appointments and the three subgroups. Results: Of 2,526,549 appointments included, 703,449 were missed (27.8%). The predictive model for all appointments contains 30 variables, with an area under the ROC (AUROC) curve of 0.71, calibration-in-the-large (CITL) of 0.046, and calibration slope of 1.03 in the validation cohort. For General Practitioners the model has 28 variables (AUROC of 0.72, CITL of 0.053, and calibration slope of 1.01). For clinical subspecialties, the model has 23 variables (AUROC of 0.71, CITL of 0.039, and calibration slope of 1), and for surgical specialties, the model has 22 variables (AUROC of 0.70, CITL of 0.023, and calibration slope of 1.01). Conclusion: We build robust predictive models of nonattendance with adequate precision and calibration for each of the subgroups.
Palabras clave: APPOINTMENTS , NONATTENDANCE , PREDICTIVE MODEL
Ver el registro completo
 
Archivos asociados
Tamaño: 468.7Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/210682
DOI: http://dx.doi.org/10.1002/hpm.3590
Colecciones
Articulos (IMTIB)
Articulos de INSTITUTO DE MEDICINA TRASLACIONAL E INGENIERIA BIOMEDICA
Citación
Giunta, Diego Hernan; Huespe, Ivan Alfredo; Alonso Serena, Marina; Luna, Daniel Roberto; Gonzalez Bernaldo de Quirós, Fernan; Development and validation of nonattendance predictive models for scheduled adult outpatient appointments in different medical specialties; John Wiley & Sons; International Journal of Health Planning and Management; 38; 2; 11-2022; 377-397
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES