Mostrar el registro sencillo del ítem

dc.contributor.author
Abia, Carmen  
dc.contributor.author
Lopez, Carlos Alberto  
dc.contributor.author
Gainza, Javier  
dc.contributor.author
Rodrigues, João Elias F. S.  
dc.contributor.author
Ferrer, Mateus M.  
dc.contributor.author
Nemes, N. M.  
dc.contributor.author
Dura, Oscar J.  
dc.contributor.author
Martínez, José L.  
dc.contributor.author
Fernández Díaz, María T.  
dc.contributor.author
Álvarez Galván, Consuelo  
dc.contributor.author
Németh, Gergely  
dc.contributor.author
Kamarás, Katalin  
dc.contributor.author
Fauth, François  
dc.contributor.author
Alonso, José A.  
dc.date.available
2023-09-05T13:03:18Z  
dc.date.issued
2022-03  
dc.identifier.citation
Abia, Carmen; Lopez, Carlos Alberto; Gainza, Javier; Rodrigues, João Elias F. S.; Ferrer, Mateus M.; et al.; The structural evolution, optical gap, and thermoelectric properties of the RbPb2Br5 layered halide, prepared by mechanochemistry; Royal Society of Chemistry; Journal of Materials Chemistry C; 10; 3-2022; 6857-6865  
dc.identifier.issn
2050-7534  
dc.identifier.uri
http://hdl.handle.net/11336/210483  
dc.description.abstract
Rubidium di-lead pentabromide, RbPb2Br5, belongs to a family of layered lead-containing halides, with the common formula APb2X5 (where A = K, Rb, Cs; X = Cl, Br). The optical properties of RbPb2Br5 and rare-earth doped specimens are promising as low-phonon energy materials for tunable middle infrared and long-wavelength infrared laser sources, with suitable stability and resistance to wet conditions. In contrast to CsPb2Br5, the Rb counterpart has been barely studied and deserves further attention. Up to now, there have been no experimental reports on the transport properties such as the electronic conductivity, Seebeck coefficient or thermal transport. We describe here that this material can be prepared by ball milling in a straightforward way, yielding specimens with superior crystallinity. A structural investigation using synchrotron X-ray powder diffraction (SXRD) data combined with neutron powder diffraction (NPD) in a wide temperature range, from 15 to 573 K, was essential to evaluate the thermal evolution and to determine the Debye constants, yielding information on the relative Rb-Br and Pb-Br chemical bonds. In combination with DSC and TG measurements, no phase transitions were observed. Furthermore, an analysis of SXRD and NPD data (XRD-NPD) at room temperature reveals the directions of electron lone pair of Pb2+ ions lead atoms: its stereochemical effect is obvious in the [PbBr8] octahedral distortions. Diffuse reflectance UV-Vis spectroscopy yields an optical gap of 3.36 eV, close to that determined for a single-crystal material. Photoluminescence measurements indicate a lack of overlap between the excitation and emission spectra, due to the considerable Stokes shift, which prohibits self-absorption and thus enables applications in photovoltaics and biomedicine. The experimental information about the chemical bonds and band gap was studied via first-principles calculations. A maximum positive Seebeck coefficient of 3 200 μV K−1 is obtained at 560 K, which is one order of magnitude higher than those reported for other halide perovskites.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
RbPb2Br5  
dc.subject.classification
Química Inorgánica y Nuclear  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The structural evolution, optical gap, and thermoelectric properties of the RbPb2Br5 layered halide, prepared by mechanochemistry  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T11:10:47Z  
dc.journal.volume
10  
dc.journal.pagination
6857-6865  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Abia, Carmen. Institut Laue Langevin; Francia. Instituto de Ciencia de Materiales de Madrid; España  
dc.description.fil
Fil: Lopez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Área Química General e Inorgánica; Argentina  
dc.description.fil
Fil: Gainza, Javier. Instituto de Ciencia de Materiales de Madrid; España  
dc.description.fil
Fil: Rodrigues, João Elias F. S.. European Synchrotron Radiation; Francia. Instituto de Ciencia de Materiales de Madrid; España  
dc.description.fil
Fil: Ferrer, Mateus M.. Universidade Federal de Pelotas; Brasil  
dc.description.fil
Fil: Nemes, N. M.. Instituto de Ciencia de Materiales de Madrid; España. Universidad Complutense de Madrid; España  
dc.description.fil
Fil: Dura, Oscar J.. Universidad de Castilla-La Mancha; España  
dc.description.fil
Fil: Martínez, José L.. Instituto de Ciencia de Materiales de Madrid; España  
dc.description.fil
Fil: Fernández Díaz, María T.. Institut Laue Langevin; Francia  
dc.description.fil
Fil: Álvarez Galván, Consuelo. Consejo Superior de Investigaciones Científicas; España  
dc.description.fil
Fil: Németh, Gergely. No especifíca;  
dc.description.fil
Fil: Kamarás, Katalin. No especifíca;  
dc.description.fil
Fil: Fauth, François. No especifíca;  
dc.description.fil
Fil: Alonso, José A.. Instituto de Ciencia de Materiales de Madrid; España  
dc.journal.title
Journal of Materials Chemistry C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/d2tc00653g