Mostrar el registro sencillo del ítem
dc.contributor.author
Della Nave, Facundo Nicolás

dc.contributor.author
Ojeda, Jonathan J.
dc.contributor.author
Irisarri, Jorge Gonzalo Nicolás

dc.contributor.author
Pembleton, Keith
dc.contributor.author
Oyarzabal, Mariano

dc.contributor.author
Oesterheld, Martin

dc.date.available
2023-09-04T19:25:33Z
dc.date.issued
2022-08
dc.identifier.citation
Della Nave, Facundo Nicolás; Ojeda, Jonathan J.; Irisarri, Jorge Gonzalo Nicolás; Pembleton, Keith; Oyarzabal, Mariano; et al.; Calibrating APSIM for forage sorghum using remote sensing and field data under sub-optimal growth conditions; Elsevier; Agricultural Systems; 201; 8-2022; 1-14
dc.identifier.issn
0308-521X
dc.identifier.uri
http://hdl.handle.net/11336/210461
dc.description.abstract
CONTEXT: Mechanistic sorghum models have been mostly used to estimate sorghum yield for grain sorghum for a range of genotype, management, and environmental conditions. There is a lack of model testing for crop growth and development responses for forage genotypes and information for phenological parameterization under sub-optimal water and nitrogen stress conditions in forage systems. OBJETIVE: The aims of this study were to (i) use NDVI to parametrize APSIM model to estimate forage sorghum phenology, (ii) calibrate APSIM to simulate green cover, intercepted solar radiation and aboveground biomass, and (iii) quantify the variance of inter-annual aboveground biomass and the effect of water availability on forage sorghum biomass under sub-optimal environment × management combinations. METHODS: We used climate, soil, management records and sorghum crop observations collected from farm and field experiments in Argentina and Australia. NDVI values were gathered from Sentinel-2 and a handheld optical sensor and then related to fAPAR measurements. Phenological stages were derived from fAPAR seasonal dynamics and implemented as input in the APSIM calibration. Finally, we assessed the temporal AGB variability through long-term simulations analysis. RESULTS AND CONCLUSIONS: NDVI seasonal dynamics accurately represented the fraction of the absorbed photosynthetically active radiation (R2=0.92) and then, the remote-sensing parametrized APSIM model satisfactorily simulated crop phenology (CCC=0.75-0.92, NRMSE=9-22%). The model was also able to satisfactorily simulate crop growth (CCC=0.89 and NRMSE=24.8% for green cover; CCC=0.81 and NRMSE=34.6% for intercepted solar radiation; CCC=0.91 and NRMSE=37% for aboveground biomass). APSIM simulations during 22 years across 5 contrasting locations showed high inter-annual variability of aboveground biomass (CV=47%), mainly driven by inter-annual variation of soil water availability (CV=20%). Our study demonstrated that (i) remote sensing data was a reliable source for APSIM phenology parametrization, (ii) the model was able to satisfactorily simulate crop growth and development of forage sorghum under sub-optimal conditions across several genotype × environment × management combinations and (iii) water availability was the main driver of aboveground biomass inter-annual variance. SIGNIFICANCE: Given the pressure of the global human population to satisfy an increasing demand for food, our results provide a new path for the combined use of remote sensing and mechanistic modelling to improve forage sorghum biomass estimations in marginal environments.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
APSIM NEXT GENERATION
dc.subject
CROP MODELLING
dc.subject
INTER-ANNUAL BIOMASS VARIABILITY
dc.subject
REMOTE SENSING
dc.subject
SENTINEL-2
dc.subject
SORGHUM BICOLOR (L.) MOENCH
dc.subject.classification
Agronomía, reproducción y protección de plantas

dc.subject.classification
Agricultura, Silvicultura y Pesca

dc.subject.classification
CIENCIAS AGRÍCOLAS

dc.title
Calibrating APSIM for forage sorghum using remote sensing and field data under sub-optimal growth conditions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-28T10:28:09Z
dc.journal.volume
201
dc.journal.pagination
1-14
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Della Nave, Facundo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
dc.description.fil
Fil: Ojeda, Jonathan J.. University of Tasmania; Australia. Regrow Ag; Australia
dc.description.fil
Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Rothamsted Research; Reino Unido
dc.description.fil
Fil: Pembleton, Keith. University Of Southern Queensland; Australia
dc.description.fil
Fil: Oyarzabal, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina
dc.description.fil
Fil: Oesterheld, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
dc.journal.title
Agricultural Systems

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0308521X22000956
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.agsy.2022.103459
Archivos asociados