Artículo
Bivariant Hermitian K-theory and Karoubi's fundamental theorem
Fecha de publicación:
12/2022
Editorial:
Elsevier Science
Revista:
Journal Of Pure And Applied Algebra
ISSN:
0022-4049
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let ℓ be a commutative ring with involution ⁎ containing an element λ such that λ+λ⁎=1 and let Algℓ⁎ be the category of ℓ-algebras equipped with a semilinear involution and involution preserving homomorphisms. We construct a triangulated category kkh and a functor jh:Algℓ⁎→kkh that is homotopy invariant, matricially and hermitian stable and excisive and is universal initial with these properties. We prove that a version of Karoubi's fundamental theorem holds in kkh. By the universal property of the latter, this implies that any functor H:Algℓ⁎→T with values in a triangulated category which is homotopy invariant, matricially and hermitian stable and excisive satisfies the fundamental theorem. We also prove a bivariant version of Karoubi's 12-term exact sequence.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortiñas, Guillermo Horacio; Vega, Santiago Javier; Bivariant Hermitian K-theory and Karoubi's fundamental theorem; Elsevier Science; Journal Of Pure And Applied Algebra; 226; 12; 12-2022; 1-32
Compartir
Altmétricas