Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization

Garcia-Mata, IgnacioIcon ; Martin, J.; Giraud, O.; Georgeot, B.; Dubertrand, R.; Lemarié, G.
Fecha de publicación: 12/2022
Editorial: American Physical Society
Revista: Physical Review B
ISSN: 2469-9950
e-ISSN: 2469-9969
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length ζ than the one in the transverse direction ζ. Importantly, these two lengths have different critical behaviors: ζ diverges with a critical exponent ν=1, while ζ reaches a finite universal value ζc at the transition point Wc. Indeed, ζ-1≈ζc-1+ζ-1, with ζ∼(W-Wc)-ν associated with a new critical exponent ν=12, where exp(ζ) controls finite-size effects. The delocalized phase inherits the strongly nonergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent ν=12. This shows a very strong analogy with the MBL transition: the behavior of ζ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a small-world complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization.
Palabras clave: LOCALIZATION , RANDOM , GRAPHS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.489Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/210335
DOI: http://dx.doi.org/10.1103/PhysRevB.106.214202
Colecciones
Articulos(IFIMAR)
Articulos de INST.DE INVESTIGACIONES FISICAS DE MAR DEL PLATA
Citación
Garcia-Mata, Ignacio; Martin, J.; Giraud, O.; Georgeot, B.; Dubertrand, R.; et al.; Critical properties of the Anderson transition on random graphs: Two-parameter scaling theory, Kosterlitz-Thouless type flow, and many-body localization; American Physical Society; Physical Review B; 106; 21; 12-2022; 1-33
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES