Mostrar el registro sencillo del ítem

dc.contributor.author
Sadeghi, Morteza  
dc.contributor.author
Saidi, Mohammad Hassan  
dc.contributor.author
Kröger, Martin  
dc.contributor.author
Tagliazucchi, Mario Eugenio  
dc.date.available
2023-09-01T19:24:12Z  
dc.date.issued
2022-08  
dc.identifier.citation
Sadeghi, Morteza; Saidi, Mohammad Hassan; Kröger, Martin; Tagliazucchi, Mario Eugenio; Stimuli-responsive polyelectrolyte brushes for regulating streaming current magnetic field and energy conversion efficiency in soft nanopores; American Institute of Physics; Physics of Fluids; 34; 8; 8-2022; 1-32  
dc.identifier.issn
1070-6631  
dc.identifier.uri
http://hdl.handle.net/11336/210259  
dc.description.abstract
The electrokinetic energy conversion, electroviscous effect, and induced internal and external magnetic fields in a smart polyelectrolyte grafted "soft"nanopore with pH responsiveness are studied here using an efficient molecular theory approach. The analysis is based on writing the total free energy of the system, including the conformational entropy of the flexible, self-avoiding polymer chains and the translational entropy of the mobile species, the electrostatic interactions, and the free energy due to chemical equilibrium reactions. Then, the free energy is minimized, while satisfying the necessary constraints to find the equilibrium state of the system. The predictions of the model are shown to be in excellent agreement with analytical solutions derived for special cases. We discuss the effect of different influential environmental and polymer brush parameters in detail and show that the electrokinetic energy conversion efficiency is optimal at moderate pH values and low background salt concentrations. It is also shown that the electrokinetic energy conversion efficiency is a complex function depending on both the environmental and polymer brush properties. Notably, high slip coefficients or high polymer grafting densities do not necessarily lead to a high energy conversion efficiency. Magnetic field readouts allow to measure streaming currents through nanopores without the need of electrodes and may be utilized as a secondary electronic signature in nanopore sensing techniques. It is shown that in nanopores modified with polyelectrolyte brushes, the induced magnetic fields can be tens of times larger than those in solid-state nanopores having only surface charges. We show that by tuning the pH, background salt concentration, surface charge, and polyelectrolyte grafting density, the magnitude of the internal and external magnetic fields can be significantly changed and controlled in a wide range.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Nanopore  
dc.subject
Magnetic  
dc.subject
Electroosmotic  
dc.subject
Polymer  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Stimuli-responsive polyelectrolyte brushes for regulating streaming current magnetic field and energy conversion efficiency in soft nanopores  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-10T11:17:06Z  
dc.journal.volume
34  
dc.journal.number
8  
dc.journal.pagination
1-32  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Sadeghi, Morteza. Sharif University of Technology; Irán  
dc.description.fil
Fil: Saidi, Mohammad Hassan. Sharif University of Technology; Irán  
dc.description.fil
Fil: Kröger, Martin. No especifíca;  
dc.description.fil
Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.journal.title
Physics of Fluids  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0101738