Mostrar el registro sencillo del ítem
dc.contributor.author
Casal, Ramiro
dc.contributor.author
Di Persia, Leandro Ezequiel
dc.contributor.author
Schlotthauer, Gaston
dc.date.available
2023-09-01T16:57:09Z
dc.date.issued
2022-03
dc.identifier.citation
Casal, Ramiro; Di Persia, Leandro Ezequiel; Schlotthauer, Gaston; Temporal convolutional networks and transformers for classifying the sleep stage in awake or asleep using pulse oximetry signals; Elsevier; Journal of Computational Science; 59; 3-2022; 1-10
dc.identifier.issn
1877-7503
dc.identifier.uri
http://hdl.handle.net/11336/210206
dc.description.abstract
Sleep disorders are very widespread in the world population and suffer from a generalized underdiagnosis, given the complexity of their diagnostic methods. Therefore, there is an increasing interest in developing simpler screening methods. Pulse oximeter is an ideal device for sleep disorder screenings, since it is a portable, low-cost and accessible technology. This device can provide an estimation of the heart rate (HR), which can be useful to obtain information regarding the sleep stage. In this work, we developed a network architecture in order to classify the sleep stage in awake or asleep using only HR signals from a pulse oximeter. The proposed architecture has two fundamental parts. The first part has the aim of obtaining a representation of the HR by using temporal convolutional networks. Then, the obtained representation is used to feed the second part, which is based on transformers, a model built solely with attention mechanisms. Transformers are able to model the sequence, learning the transition rules between sleep stages. The performance of the proposed method was evaluated on the Sleep Heart Health Study dataset, composed of 5000 healthy and pathological subjects. The dataset was split into three subsets: 2500 for training, 1250 for validating and 1250 for testing. The overall accuracy, specificity, sensitivity and Cohen's Kappa coefficient were 90.0%, 94.9%, 78.1%, and 0.73.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ATTENTION MODELS
dc.subject
AUTOMATIC SLEEP STAGING
dc.subject
HEART RATE
dc.subject
TRANSFORMERS
dc.subject.classification
Otras Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Temporal convolutional networks and transformers for classifying the sleep stage in awake or asleep using pulse oximetry signals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T20:56:31Z
dc.journal.volume
59
dc.journal.pagination
1-10
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Casal, Ramiro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
dc.description.fil
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
dc.journal.title
Journal of Computational Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1877750321002003
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jocs.2021.101544
Archivos asociados