Artículo
Normal numbers and nested perfect necklaces
Fecha de publicación:
10/2019
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal Of Complexity
ISSN:
0885-064X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
M. B. Levin used Sobol–Faure low discrepancy sequences with Pascal triangle matrices modulo 2 to construct, a real number x such that the first N terms of the sequence (2nxmod1)n≥1 have discrepancy O((logN)2∕N). This is the lowest discrepancy known for this kind of sequences. In this note we characterize Levin's construction in terms of nested perfect necklaces, which are a variant of the classical de Bruijn sequences. Moreover, we show that every real number x whose binary expansion is the concatenation of nested perfect necklaces of exponentially increasing order satisfies that the first N terms of (2nxmod1)n≥1 have discrepancy O((logN)2∕N). For the order being a power of 2, we give the exact number of nested perfect necklaces and an explicit method based on matrices to construct each of them. The computation of the nth digit of the binary expansion of a real number built from nested perfect necklaces requires O(logn) elementary mathematical operations.
Palabras clave:
LOW DISCREPANCY
,
NORMAL NUMBERS
,
PERFECT NECKLACES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Becher, Veronica Andrea; Carton, Olivier; Normal numbers and nested perfect necklaces; Academic Press Inc Elsevier Science; Journal Of Complexity; 54; 101403; 10-2019; 1-12
Compartir
Altmétricas