Mostrar el registro sencillo del ítem
dc.contributor.author
Valverde, Ainara
dc.contributor.author
Tovar, Gabriel I.
dc.contributor.author
Rio López, Natalia A.
dc.contributor.author
Torres, Dimas Ignacio
dc.contributor.author
Rosales, Maibelin
dc.contributor.author
Wuttke, Stefan
dc.contributor.author
Fidalgo Marijuan, Arkaitz
dc.contributor.author
Porro, José María
dc.contributor.author
Jiménez Ruiz, Mónica
dc.contributor.author
García Sakai, Victoria
dc.contributor.author
García, Andreina
dc.contributor.author
Laza, José Manuel
dc.contributor.author
Vilas Vilela, José Luis
dc.contributor.author
Lezama, Luis
dc.contributor.author
Arriortua, María I.
dc.contributor.author
Copello, Guillermo Javier
dc.contributor.author
Fernández De Luis, Roberto
dc.date.available
2023-09-01T10:37:07Z
dc.date.issued
2022-11
dc.identifier.citation
Valverde, Ainara; Tovar, Gabriel I.; Rio López, Natalia A.; Torres, Dimas Ignacio; Rosales, Maibelin; et al.; Designing Metal-Chelator-like Traps by Encoding Amino Acids in Zirconium-Based Metal-Organic Frameworks; American Chemical Society; Chemistry Of Materials; 34; 21; 11-2022; 9666-9684
dc.identifier.issn
0897-4756
dc.identifier.uri
http://hdl.handle.net/11336/210126
dc.description.abstract
Metal chelators and porous sorbents are two of the forefront technologies applied for the recovery and separation of hazardous and/or valuable metal ions from aqueous solutions (i.e., polluted water sources, metal-rich mining wastewaters, acid leachates, and so forth). The transfer of the metal coordination functions of metal chelators to chemically stable host materials had only limited success so far. Here, we report the installation of natural acids (i.e., malic acid, mercaptosuccinic acid, succinic acid, fumaric acid, and citric acid) and amino acids (i.e., histidine, cysteine, and asparagine) within a porous zirconium-based trimesate metal-organic framework (MOF), namely, MOF-808. Applying this strategy, we were able to produce a pore environment spatially decorated with multiple functional groups usually found in commercial chelator molecules. The chemical stability of the amino acid molecules installed by the solvent-assisted ligand exchange has been studied to delimitate the applicability window of these materials. The adsorption affinity of MOF-808@(amino)acids in static and column-bed configurations can be fine-tuned as a function of the amino acid residues installed in the framework. MOF-808(amino)acid columns can be applied efficiently both for water remediation of heavy metals and for the separation of metal ions with different acidities. For instance, the initial trends for the dispersion of rare-earth elements have been identified. Electron paramagnetic resonance and inelastic neutron scattering spectroscopy reveal that MOF-808@(amino)acids stabilize metal centers as isolated and clustered species in a coordination fashion that involves both the amine and thiol functionals and that affects the vibrational freedom of some of the chemical groups of the amino acid molecules. The metal-ion stabilization within amino acid-decorated MOFs opens the avenue for application for pseudo biocatalysis purposes in the near future.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MOF
dc.subject
Chelator
dc.subject
Aminoacid
dc.subject
Adsorption
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Designing Metal-Chelator-like Traps by Encoding Amino Acids in Zirconium-Based Metal-Organic Frameworks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:57:04Z
dc.journal.volume
34
dc.journal.number
21
dc.journal.pagination
9666-9684
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Valverde, Ainara. Universidad del País Vasco; España
dc.description.fil
Fil: Tovar, Gabriel I.. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Rio López, Natalia A.. No especifíca;
dc.description.fil
Fil: Torres, Dimas Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil
Fil: Rosales, Maibelin. Advanced Mining Technology Center; Chile
dc.description.fil
Fil: Wuttke, Stefan. No especifíca;
dc.description.fil
Fil: Fidalgo Marijuan, Arkaitz. No especifíca;
dc.description.fil
Fil: Porro, José María. No especifíca;
dc.description.fil
Fil: Jiménez Ruiz, Mónica. Institut Laue Langevin; Francia
dc.description.fil
Fil: García Sakai, Victoria. No especifíca;
dc.description.fil
Fil: García, Andreina. No especifíca;
dc.description.fil
Fil: Laza, José Manuel. Universidad del País Vasco; España
dc.description.fil
Fil: Vilas Vilela, José Luis. Universidad del País Vasco; España
dc.description.fil
Fil: Lezama, Luis. Universidad del País Vasco; España
dc.description.fil
Fil: Arriortua, María I.. Universidad del País Vasco; España
dc.description.fil
Fil: Copello, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
dc.description.fil
Fil: Fernández De Luis, Roberto. No especifíca;
dc.journal.title
Chemistry Of Materials
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.chemmater.2c02431
Archivos asociados