Artículo
Short-term power demand prediction for energy management of an electric vehicle based on batteries and ultracapacitors
Asensio, Eduardo Maximiliano
; Magallán, Guillermo Andrés
; Perez, Laura Virginia
; de Angelo, Cristian Hernan
Fecha de publicación:
05/2022
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Energy
ISSN:
0360-5442
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Model predictive control applied to energy management of hybrid energy storage system (HESS) in electric vehicles (EV) requires a proper knowledge of the power demanded by the traction system. As a key point of this work, two strategies to predict the power demand profile based on an autoregressive (AR) model and a Kalman Filter scheme are proposed. It is shown that using a Kalman filter with an AR model to predict the power demand, an error of 0.2% is achieved for the first prediction compared to 1.4% obtained for the case in which the power demand is considered constant on a standard drive cycle. These strategies are used to implement a nonlinear model predictive control (NMPC) strategy for the power split of a HESS based on batteries and Ultracapacitor (UC) in an EV. To preserve the health of the battery, a cost function is proposed to minimize large and highly variant battery currents. Regarding the cost of battery degradation, it is shown that the proposed strategies obtain results comparable to the ideal case in which the required power is fully known.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IITEMA)
Articulos de INSTITUTO DE INVESTIGACIONES EN TECNOLOGIAS ENERGETICAS Y MATERIALES AVANZADOS
Articulos de INSTITUTO DE INVESTIGACIONES EN TECNOLOGIAS ENERGETICAS Y MATERIALES AVANZADOS
Articulos(INTEQUI)
Articulos de INST. DE INVEST. EN TECNOLOGIA QUIMICA
Articulos de INST. DE INVEST. EN TECNOLOGIA QUIMICA
Citación
Asensio, Eduardo Maximiliano; Magallán, Guillermo Andrés; Perez, Laura Virginia; de Angelo, Cristian Hernan; Short-term power demand prediction for energy management of an electric vehicle based on batteries and ultracapacitors; Pergamon-Elsevier Science Ltd; Energy; 247; 1234; 5-2022; 1-12
Compartir
Altmétricas