Artículo
Sparse estimation of dynamic principal components for forecasting high-dimensional time series
Fecha de publicación:
10/2021
Editorial:
Elsevier
Revista:
International Journal of Forecasting
ISSN:
0169-2070
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present the sparse estimation of one-sided dynamic principal components (ODPCs) to forecast high-dimensional time series. The forecast can be made directly with the ODPCs or by using them as estimates of the factors in a generalized dynamic factor model. It is shown that a large reduction in the number of parameters estimated for the ODPCs can be achieved without affecting their forecasting performance.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Peña, Daniel; Smucler, Ezequiel; Yohai, Victor Jaime; Sparse estimation of dynamic principal components for forecasting high-dimensional time series; Elsevier; International Journal of Forecasting; 37; 4; 10-2021; 1498-1508
Compartir
Altmétricas