Mostrar el registro sencillo del ítem
dc.contributor.author
Coria Pantano, Gustavo Ezequiel

dc.contributor.author
Romero Quete, David
dc.contributor.author
Romero Quete, Andrés Arturo

dc.date.available
2023-08-30T15:52:17Z
dc.date.issued
2022-03
dc.identifier.citation
Coria Pantano, Gustavo Ezequiel; Romero Quete, David; Romero Quete, Andrés Arturo; Computational efficient approach to compute a prediction-of-use tariff for coordinating charging of plug-in electric vehicles under uncertainty; Elsevier; International Journal of Electrical Power & Energy Systems; 136; 3-2022; 1-12
dc.identifier.issn
0142-0615
dc.identifier.uri
http://hdl.handle.net/11336/209937
dc.description.abstract
The stochastic nature associated with the baseload (BL) forecasting, photovoltaic (PV) generation and conditions of use of plug-in electric vehicles (PEV) adds new complexity to the definition of PEVs charging coordination strategies. Therefore, a large number of scenarios must be generated to integrate these uncertainties in the definition of a prediction-of-use (POU) tariff that encourages the PEVs to charge at certain times of the day. The main purpose of this article is to analyze the effects of scenario reduction techniques in the determination of an adequate POU tariff that considers the uncertainties associated with BL, PV generation and conditions of use of PEVs. The methodology proposed in this work considers the backward scenario reduction technique to determine the optimal charging power profiles of PEV aggregators through the Distribution System Operator (DSO) coordination. From the PEV optimal charging profiles, the DSO calculates a POU tariff for each aggregator, considering the uncertainties in of the problem. Results show that the use of scenario reduction techniques to determine the POU tariff reduces the computational burden without significantly affecting the obtained results. Finally, the simulation reflects the advantage of integrating PV generation in the distribution system, since using the proposed coordination strategy, the loss of life of the transformer slowed down.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHARGING COORDINATION
dc.subject
PHOTOVOLTAIC GENERATION
dc.subject
PLUG-IN ELECTRIC VEHICLE
dc.subject
PREDICTION-OF-USE TARIFF
dc.subject
SCENARIO REDUCTION
dc.subject
UNCERTAINTIES
dc.subject.classification
Ingeniería Eléctrica y Electrónica

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Computational efficient approach to compute a prediction-of-use tariff for coordinating charging of plug-in electric vehicles under uncertainty
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-03T14:03:58Z
dc.journal.volume
136
dc.journal.pagination
1-12
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Coria Pantano, Gustavo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
dc.description.fil
Fil: Romero Quete, David. Universidad Nacional de Colombia; Colombia
dc.description.fil
Fil: Romero Quete, Andrés Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
dc.journal.title
International Journal of Electrical Power & Energy Systems

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0142061521009212
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.ijepes.2021.107692
Archivos asociados